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Welcome to Building in Core
The REAKTOR 6 Documentation

Welcome to Building in Core

Welcome to Building in Core, a manual describing the Core level in REAKTOR with its low-lev-
el building features. Using a run-time optimizing compiler, this graphical audio programming
language can be used for implementing your own custom DSP algorithms. This document also
includes reference information about the Core Macro Library, a comprehensive collection of

DSP building blocks.

The REAKTOR 6 Documentation

File Edit Settings Options View Helpli

&, REAKTOR

Launch Service Center 130.0

Open What's New

Open Getting Started
Open Diving Deeper
Open Building in Primary
Open Building in Core

Visit Reaktor on the Web
Visit the Knowledge Base
Visit the UserLibrary on the Web

About Reaktor 6

The REAKTOR documentation is accessible from the Help menu

The documentation for REAKTOR 6 is divided into five separate documents, guiding you from
loading and playing pre-built Ensembles to building your own Instruments.

REAKTOR 6 What Is New is written for users who are already familiar with previous versions
of REAKTOR and only describes the latest features in brief.
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e REAKTOR 6 Getting Started is for new users. It is the only document needed for users who
intend to use REAKTOR for loading and playing pre-built REAKTOR instruments and ef-
fects.

e REAKTOR 6 Diving Deeper expands on the concepts introduced in the Getting Started docu-
ment. It provides more detail on subjects like Snapshots (REAKTOR's preset system), and
introduces advanced topics like OSC control and combining multiple Instruments in one
Ensemble.

e REAKTOR 6 Building in Primary shows you how to build your own Instruments in REAK-
TOR’s Primary level. It focuses on a series of tutorials that guide you through building
your first synthesizers, effects, and sequencers.

e REAKTOR 6 Building in Core describes the Core level of REAKTOR with its low-level build-
ing features, which can be used for implementing custom DSP algorithms. It includes ref-
erence information about the Core Macro Library, an comprehensive collection of DSP
building blocks.

With the exception of the What Is New document, each of the documents listed above builds
on the knowledge of the previous documents. While it is not necessary to read all of every
document, some of the more advanced documents, like Building in Primary, assume knowl-
edge from the previous documents.
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Manual Conventions

1.2 Manual Conventions

This section introduces you to the signage and text highlighting used in this manual.

e Text appearing in (drop-down) menus (such as Open..., Save as... etc.) and paths to loca-
tions on your hard disk or other storage devices is printed in italics.

e Text appearing elsewhere (labels of buttons, controls, text next to checkboxes etc.) is
printed in blue. Whenever you see this formatting applied, you will find the same text ap-
pearing somewhere on the screen.

e |mportant names and concepts are introduced in bold. Furthermore, bold text is used to
stress important statements in the text.

e References to keys on your computer’s keyboard you’ll find put in square brackets (e.g.,
“Press [Shift] + [Enter]”).

1. Single instructions are introduced by this play button type arrow.
= Results of actions are introduced by this smaller arrow.

An indented, gray paragraph contains additional, contextual information.

Furthermore, this manual uses particular formatting to point out special facts and to warn you
of potential issues. The icons introducing these notes let you see what kind of information is to
be expected:

The speech bubble icon indicates a useful tip that may often help you to solve a task
more efficiently.

The exclamation mark icon highlights important information that is essential for the giv-
en context.

The red cross icon warns you of serious issues and potential risks that require your full
attention.
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Core Updates in REAKTOR 6.0.1

Here is a brief list of what has been changed in Core compared to REAKTOR 5.

Two new major features, Scoped Buses (see section 13.3, Scoped Buses) and Bundles
(see section 13.4, Bundles) have been introduced. Particularly the former SR.C and SR.R
connections are now a part of the Scoped Buses/Bundles framework (see section 14.9, SR
and CR Buses).

Unification of audio and event Core Cells. Now there is only one Core Cell type. The input
and output ports of the Core Cells can be switched between audio and event types (see
sections 12.5.1, Inputs and 12.5.2, Outputs).

SR.C does not send an initialization event anymore (see section 14.9.6, Internal Structure
of Clock Buses).

Upon importing the older Core Cells special adapter Macros are automatically inserted at the top
level of the Structures to simulate the REAKTOR 5 behavior of SR.C.

Nonsolid Macros and Structures now have a dedicated look (see section 12.6.3, Proper-
ties).

The feedback loop highlighting now highlights the entire loop instead of just the resolu-
tion point (see section 14.10.1, Automatic Resolution).

The Macro library has been completely restructured (see section 16, Macro Reference).
> No more Expert / Standard parts.
o New oscillators, filters, FX, LFOs, envelopes and smoothers.

o Dedicated set of Macros for audio and control rate handling (see section 14.9, SR and
CR Buses).

o The former Expert > Modulation part is now found under Math Mod.
o The logic signals have been slightly reworked (see section 16.1.9, Logic).

o The Flow submenu contains a number of value-controlled routers.
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o The z/-1 Macros have been reworked. Now they are intended to be used exclusively
for audio (see section 14.10.2, Manual Resolution). For other one-clock delay purpos-
es use Memory > Latch[-1] or Event Proc > Event[-1] Macros.

o The ~exp and ~/og Modules used inside the Macros (such as e.g. Convert > P2F) are
typically set to the highest precision. Set them to a lower precision if the highest pre-
cision is not needed.

Core Updates in REAKTOR 6.2.2

In REAKTOR 6.2.2 the Macro Library has received significant updates.

New Additions

(Non-transposed) nonlinear Sallen—Key filter
8-pole ladder filter
6-pole and 8-pole band-pass Butterworth filters

2nd kind (resonating) Butterworth filters (as described in The Art of VA Filter Design by
Vadim Zavalishin)

Completely reworked set of shelving filters

Completely reworked set of crossover Macros

Configurable notch count for phasers

Thru-zero phaser and flanger, barber pole phaser and flanger, harmonic phaser
Asymmetric overdrive, anti-aliased versions of symmetric and asymmetric overdrives
Bit and sample rate reduction effects

Compressor

Tempo and transport position synced LFO

LFO toolkit

Zero-crossing detector event processing Macro
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Updates and Improvements

e (Cleaned up the internal structure of the transposed Sallen—Key filters. The TSK NLA filter
sound is slightly changed.

e |mproved CPU consumption of the Delay and Delay (ZDF Toolkit) Macros.

Fixes

e Wrong phase deviation value at the output of the Phase Splitter Macro inside the
Freq Shift Macro (this issue did not affect the sound, but provided wrong information).

e Some Math Macros were sending initialization when they should not.

e xyZpolar and toPolar Macros did not handle zero input.
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2 REAKTOR Core Fundamentals

2.1  An Introduction to Core Cells

REAKTOR Core is a special level of functionality within REAKTOR with a distinct set of fea-
tures. Similarly to the main part of REAKTOR (which we will refer to as the Primary level of
REAKTOR), the Core level is also using a graphical signal flow paradigm. However, there are a
number of important differences in the details between the Primary and the Core levels:

e REAKTOR Core is using an integrated run-time compiler, allowing efficient processing of
highly detailed low-level Structures.

e The low-level Structure building features of REAKTOR Core make it specifically suitable
for implementing custom DSP algorithms.

e The details of the rules of signal processing in REAKTOR Core are different from Primary
level and are tailored to the needs of the DSP algorithm design.

e REAKTOR Core is using a different set of basic Modules and a different Macro library.

The REAKTOR Core Structures exist inside special wrapper objects called Core Cells. Core
Cells can be considered as a special kind of Primary level Macros, where the difference is that
inside Core Cells there is a different world of REAKTOR Core.

In order to create a new blank Core Cell right-click somewhere in the background of the REAK-
TOR Structure and select New Core Cell from the context menu:
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@« COut
@« COut E

Built-In Module
Library
Open Searchbox

Mew Instrurment
Mew hacro

Mew Care Cell %
Paste

Irmport Ensemble ..

Save Ensemble &s .,

Creating a new Core Cell from the context menu.

The prebuilt Core Cells from the factory and user libraries can be found in the Library menu
among Primary Macros and Instruments.

Core Cells look like a special type of the Primary level Modules:

In - #Shp

n In - ®In
3-1-2 Shaper

A Core Cell.

Similarly to Primary level Macros, Core Cells have internal Structures, which can be navigated
to by double-clicking the Core Cell.

REAKTOR 6 - - 16



REAKTOR Core Fundamentals

Core Structures

2.2  Core Structures

Core level Structures (or simply 'Core Structures') are the Structures contained inside Core Cells
and Core Macros. These Structures look like follows:

1 3

In— ——# [ut
- '_:thl ."—.'_:thl

- In #—In 3-1-2 Shaper

The internal Structure of a Core Cell.

The most obvious difference from the Primary Structure is the frame with three different areas
(1), (2) and (3).

(1) Normal Modules area: The bigger area in the middle (referred to as the normal Modules area
or simply normal area) is where the majority of the Structure's Modules (more specifically, the
so-called normal Modules) are typically located. The Core level Macros are also inserted here
among the other normal Modules.

(2) Input area: The smaller area on the left is where the input port Modules are located.
(3) Output area: The smaller area on the right is where the output port Modules are located.

The three areas can contain only the Modules of the respective flavor, that is the normal area
can contain only the normal Modules and the input and output areas can contain only the in-
put and output port Modules respectively.

The normal Modules can be moved freely in both horizontal and vertical directions. The input
and output port Modules can be moved only vertically. Their vertical positions specify the order
in which they appear on the outside of the Core Cell or a Core level Macro. Changing their rela-
tive vertical positions changes their outside order.
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Core Structures

In order to create a new Module in a Core Structure, right-click on the background inside of
one of these three areas. Depending on which of the three areas is clicked, a context menu with a
different list of availabhle Modules appears.

1. For example, right-click on the normal area to access the normal Modules:

haper

In—= e 0ut »
® Shp Shp

* IneIn 3-1-2 Shaper

% Built-In Module Const
Library Math
Open Searchbox Bit

Mewy Macro Flow

Mermory

Pz Scoped Bus

Compact Board Bundle

Pretty much any editing done to a Core Cell Structure will cause it to recompile. For
small and simple Core Cells the compilation typically happens very quickly, but for large
or complicated Core Cells it might take noticeable amounts of time. During the compila-
tion, the progress is displayed in REAKTOR's toolbar by an orange gradient moving over
the CPU load display:

Hio

Structure Shrinking

As more Modules are inserted into the Structure and/or moved around within the Structure, the
enclosing frame will grow to accommodate the Modules. The frame never shrinks back though.

REAKTOR 6 - - 18



REAKTOR Core Fundamentals
Built-in Modules

1. In order to make the frame shrink back, right-click on the background somewhere within
the Structure and select Compact Board from the context menu.

2- Shaper

In—= Out »
® Shpe——=®5Shp

- A Built-In Module
Libirary
Open Searchbox

Tews blacra

Paste

Compact Board

The shrinking will not change the distances between the Modules (except possibly the distances
from the inputs and the outputs to the normal Modules). There is also some hard-coded minimum
size which the shrinking will not go beyond.

2.3  Built-in Modules

The ideas and conventions behind the groups of Modules available in the Built-In Module sub-
menu of the normal area context menu are discussed in different places of the manual accord-
ing to their function. The information about specific Modules can be found directly within the
software in the Module's info.

e Const: The Core constants are very similar to the Primary level constants. See section
14.4, Initialization for additional details.
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Core Connection Types

The value of the Core constants cannot be changed in the name field of the Properties, one has to
use the dedicated value property field:

Function

FUNCTION

Math: See sections 14.1, Events and 14.2, Processing Order.

Bit: This group is simply an extension of the Math group dedicated to the integer bit arith-
metic.

Flow: See section 14.8, Routing and Merging.

Memory: See sections 14.3, Object Bus Connections (OBC) and 14.7, Arrays.

Scoped Bus: See section 13.3, Scoped Buses.

Bundle: See section 13.4, Bundles.

Macro: See section 12.6, Core Macros.

24  Core Connection Types

REAKTOR Core Structures are using several different types of connections. Respectively there
are different types of the input and output ports of the Modules used inside Core. These types
fall into several different classes.

The connections between ports of different classes are not possible. Whether the connections
between different port types within the same class are possible varies from one class to anoth-
er.
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Core Connection Types

241  Scalar

Scalar is the most commonly used class. Scalar connections can be either of float (floating-
point) or int (integer) type, of which float is more commonly used.

A connection between int ports.

All scalar types are connection-compatible to each other (meaning it is possible to connect a
float output to an int input or vice versa). The values of one type will be automatically convert-
ed into another wherever necessary:

A float output connected to an int input.

Upon conversion from float to an int the value is rounded to the nearest integer.

For the values which are exactly in between, the rounding direction is conceptually un-

® defined. For example, 1.5 can be rounded to 1 or to 2. It is not advisable to rely on a
specific direction of that rounding for any of such 'exactly-in-between' values, even if it
seems fully consistent and reliable in the current REAKTOR version. The rounding could
change e.g. on a different hardware architecture or for whatever other reason. As a gen-
eral rule one should not rely on the implementation details which are undefined by the
specification, especially if they are explicitly mentioned as undefined.
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Core Connection Types

Type Configuration

For many of Core's built-in Modules, particularly for those which perform mathematical opera-
tions, the scalar type can be reconfigured in the Properties:

Function Info

SIGNAL TYPE

Scalar configuration properties of an adder.

The Signal Type property can be switched between Float and Int. The FP Precision setting (ap-
plicable only to the float mode) can be Default, 32 bit or 64 bit. Normally it should be left at
Default, which means that the Module will use the default floating point precision of the given
Structure, where the latter (unless reconfigured by the builder) is 32 bit. The 64 bit precision
is needed in exceptional cases. The precision is not reflected visually in the look of Modules,
ports or connections. The precision does not affect the compatibility of connections either, au-
tomatic precision conversion will occur wherever necessary.

Conceptually, a 32 bit float precision setting does not guarantee that it will have exactly 32 bit
precision. It means that the precision will be at least 32 bits. The same holds for 64 bit.

The 32 bit float is the type used by Primary audio and event connections.

242 0BC

The OBC class is used for identification of the memory storage items (see the discussion in
section 14.3, Object Bus Connections (OBC)), where the items can be of latch (for single varia-
bles) or array type. Each of these types can be float or integer.
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Core Connection Types

A connection between int OBC ports of type latch.

A connection between float OBC ports of type array.

A connection between int OBC ports of type array.

Differently from the scalar connections, the OBC connections of different types are not com-
patible to each other.

Type Configuration

Similarly to the scalar processing Modules, most of the OBC Modules feature the possibility of
type configuration in the Properties:
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Core Connection Types

Function  Info

FP Precision

Signal Type

OBC configuration properties of a Read Module.

Besides affecting the OBC port types, these properties also affect the type of the memory stor-
age associated with the OBC Module.

Differently from scalar processing Modules, the float OBC connections of different precision
settings are not compatible to each other. Particularly, the Default precision setting is not
compatible to the others (e.g. it is not compatible to 32 bit setting even if the actual precision
corresponding to the Default setting is 32 bit). Normally the Default precision setting should
be used. See sections 12.5.3, Properties and 12.6.3, Properties for further details of precision
control.

24.3 BoolCtl

The BoolCtl class contains a single type, which is also called BoolCtl (Boolean control). These
connections are used for router control signals (see section 14.8, Routing and Merging).

A connection between BoolCtl ports.

The BoolCtl type does not have any further configuration parameters.

244 Bundle

Bundles are 'multiwire cable' connections. They are simply containers for the nested connec-
tions.
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Core Connection Types

A connection between Bundle ports.

The Bundle type itself does not have any configuration parameters. However the contents of
the cable vary depending on its source. In principle any Bundle output can be connected to
any Bundle inputs, but the connection may still be considered erroneous if the contents of the
incoming Bundle do not match the expectations of the connection destination's owner. See
section 13.4, Bundles for further details about using the Bundle connections.

2.4.5 Connection Defaults

Inputs which are left unconnected still normally have a defined functionality. This functionality
can be specifically defined by each Module for each of its inputs separately. Particularly, a
Macro builder can specify the meaning of the disconnected Macro inputs for each of its inputs
(see section 12.6.1, Inputs). In practice, however, there are most commonly used defaults.
These defaults are used for the Macro inputs, unless specifically overridden by the Macro
builder, and are also used for the built-in Modules, unless the Module's documentation says
otherwise.

e Scalar inputs default to a zero constant. This means that the input behaves exactly as if
there was a zero constant connected to it, including the initialization behavior (see sec-
tion 14.4, Initialization).

e Non-array 0BC inputs default to a unique storage location. This rule is abundantly used in
storage manipulation (see section 14.3, Object Bus Connections (OBC)).

e Array OBC inputs, unless explicitly specified otherwise, should not be left disconnected. A
disconnected array OBC input has undefined semantics, except that it is guaranteed not
to affect the correctly connected OBC memory.

e BoolCtl inputs default to a false signal.

e Bundle inputs default to an empty Bundle.
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Core Cells in Detail

2.5 Core Cells in Detail

2.5.1 Inputs

There are only two different input port Module types available in the Core Cell's input port area
context menu: /n and TableRef.

In—= ————# [(ut #*
* Shp Shp

- In #—In 3-1-2 Shaper

Mew l,\\s In

Paste TableRef

Compact Board

The Core Cell's input port area context menu.

The TableRef input port type is described separately in the Building in Primary document. The
Building in Core document deals exclusively with the Core Cell input ports of type In:

A Core Cell input port Module.
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The Properties of a Core Cell input port allow you to specify the port's name and select be-
tween the Audio and Event-mode of the port:

&. REAKTOR o

I Panel*
In E 3

Function Infa

SIGNAL TYPE

Signal Mode

Properties of a Core Cell input port Module.

The Audio/Event-mode specifies whether the input will appear as a Primary level audio or event
port on the outside of the Core Cell.

In the Info Properties tab one can specify the hint text for the port.

2.5.2  Outputs

There is only one output port Module type available in the Core Cell's output port area context
menu: Out.
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In—= e 0ut »
® Shpe——=®5Shp

* IneIn 3-1-2 Shaper News

Paste

Compact Board

The Core Cell's output port area context menu.

A Core Cell output port Module.

Output Properties

The Properties of a Core Cell's output port are similar to those of the Core Cell input port:
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&. REAKTOR
™

Out

Function Infa

FUMNCTION

o Events

Properties of the Core Cell output port Module.

The Audio/Event-mode specifies whether the output will appear as a Primary level audio or
event port on the outside of the Core Cell.

The additional Allow Audio Events checkbox is an advanced option for the event-mode outputs.
By default, the event-mode outputs block internal Core events that are originating from an audio
source (those are the events obtained directly or indirectly from audio-mode inputs of the Core
Cell and from the default internal clock sources of the Core Cell). This is important in order to
avoid events being sent inadvertently from the Core Cell's outputs to the Primary level at audio
rate, which is quite CPU-intensive. If you enable this checkbox, the event-mode output will not
block any events. This option should be used with care. For the audio-mode outputs this check-
box does not have any effect.

In the Info Properties tab one can specify the hint text for the port.

2.5.3  Properties

The Core Cells feature two distinct sets of Properties: the 'inside' (Core level) and the 'outside'
(Primary level) ones.

The outside Properties of a Core Cell are accessible when the Core Cell is selected within the
Primary Structure: They contain the Primary level configuration settings of the Core Cell.
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&. REAKTOR o

The outside Properties of a Core Cell.

The inside Properties of a Core Cell are accessible by clicking the background of the Core
Cell's internal Structure:

&. REAKTOR o
E Yane Mew

Core Cell 3-1-2 Shoper ¥ 3-1-2 Shaper

Function  Info

In— ——# [ut
- '_:thl ."—.'_:thl

- In #—In 3-1-2 Shaper

The inside Properties of a Core Cell.

The Core Cell name and (editable) Info properties are shared between the inside and the out-
side Properties and can be equally accessed from either side.
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The FP Precision property selects the meaning of the 'default' setting of the float type objects
(Modules and ports) within the Core Cell's Structure. Simply put, the floating-point computa-
tions inside the Core Cell will be performed at this precision, unless explicitly overridden for
certain elements within the Structure.

e Default: use the system-default setting, whatever that is. Technically this is 32 bit, the
same as within Primary level. This setting should be used whenever possible (that is, un-
less there is a special reason to use a different setting).

e 32 bit: use 32 bit floats by default
e 64 bit: use 64 bit floats by default

26 Core Macros

Conceptually seen, a Core Macro is not different from a Primary level Macro. This is simply a
container Module which has another Core Structure inside:

Sine LFO

A Core Macro.
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1. To create a new blank Macro, right-click in the normal area of a Core Structure and select
New Macro from the context menu.

Built-In Maodule
Library
Open Searchbox

Mewy Macro l/\\g

Paste

Carnpact Board

In the normal area context menu next to the Built-In Module submenu there is a Library sub-
menu containing the factory library and the user library Macros:
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In I —1-2 Shaper

Built-In kModule

Library Audiao
Open Searchbox Clipping
Mewr Macro Clk Bundle
Contral

Paste Convert

Compact Board Event Proc

Flow

Logic
hath
hath hod
Memory

Saturator

Load ...

The Library submenu in the Core Macro's normal area context menu.

The internal Structures of Core Macros are very much like the ones of Core Cells, except that
the available input and output port types are different.

2.6.1 Inputs

The input types available in the input port area context menu of a Macro Structure correspond
to different connection classes available in Core (see section 12.4, Core Connection Types for
the connection classes and type discussion).
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Mew I,\\S In

Paste EES

BoolCtl
Compact Board Bundle

The Core Macro's input port area context menu.

e |n: Creates a scalar type port. This is the most commonly used port type, which can be
configured to float or int, of which float is most commonly used.

e OBC: Creates an OBC type port.
e BoolCtl: Creates a BoolCtl type port.
e Bundle: Creates a Bundle type port.

A Core Macro input port Module of float type.

The set of available properties of an input port Module varies depending on the Module type.
Here one can switch the signal type between float and integer, control the floating point preci-
sion etc.
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Default Connection

Differently from Core Cell port Modules, which have only an output, the Macro input port Mod-
ules also feature an input. This input is typically left disconnected and is only used if one
wants to override the default behavior of the corresponding port on the outside of the Macro.
Technically, if a Macro input (on the outside of the Macro) is disconnected, the input connec-
tion of the corresponding input port Module inside the Macro will be used instead. So, if there
is e.g. a constant of 1 connected to the 'default' input of the input port Module, then a discon-
nected Macro port will default to 1 rather than O:

A Core Macro input port Module with a non-zero default signal.

2.6.2 Outputs

The output types available in the output port area context menu of a Macro Structure are ex-
actly the same as the input types. Except for the absence of the 'default connection' function-
ality, the output port configuration is exactly the same as that of the inputs.

2.6.3  Properties
The Properties of a Macro can be accessed in two different ways:

1. Select the Macro from the outside, from the Structure it is contained in.
2. Left-click on the Structure background inside the Macro.
In other words, the inside and the outside Properties of a Macro are identical.
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Function Info

SIGNAL TYPE

FP Precision Default =

FUMCTIOMN

Sine LFO

1COM

Properties of a Core Macro.

FP Precision: controls the default precision of the float-type objects (Modules and ports)
inside the Macro. It allows to specify the precision of the floating point computations in-
side the entire Macro (including the nested Macros), except for the areas which are ex-
plicitly configured to different precision settings. Usually this property should be left in
the Default setting.

o Default: use the same precision as the Structure that contains the Macro.

o 32 bit: objects configured to default precision will use 32 bit precision floats (notice,
that formally these objects are still considered to be configured to the default preci-
sion!) The respective float ports (scalar and OBC) on the outside of the Macro will ap-
pear as explicitly configured to 32 bit. In particular, a float OBC port which is config-
ured to the default precision setting will appear as a default-precision port on the in-
side of the Macro and as a 32 bit precision port on the outside of the Macro.

o 64 bit: the same as 32 bit, except the precision is 64 bit.

Solid: controls the solidity of the Macro. Affects the resolution of the feedback loops (see
section 14.10.3, Nonsolid Macros and Feedback Loops) and the visibility of the Scoped
Buses (see section 13.3.6, Solid Areas). This property must be left in the 'On' state unless
the Macro explicitly needs to be non-solid, otherwise it may make the Structure more

Core Macros
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prone to difficult to find building errors and sometimes unnecessarily increase compila-
tion times. The nonsolid Macros can be told visually by ragged edges, while their internal
Structures can be told by dashed frames:

Nonsolid Macro

Monsolid Macro

e | ook: controls the outside look of the Macro. There are large, medium and small settings:

e Pin Alignment: controls whether the ports of the Macro should be aligned to the top, cen-
ter or bottom in the outside look:

i [ i [ iR
Sine LFO Sine LFO Sine LFO

e Select Icon / Clear Icon: allows to load or unload a picture to be displayed in the outside
look of the Macro. It is recommended to use a picture with an alpha channel (in PNG or
TGA format).

2.1  Saving Gore Cells and Core Macros

Similarly to the Primary Macros it is possible to save Core Cells and Core Macros as individual
files as well as load them back into the Structure.
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1. To save a Core Cell or a Core Macro, right-click it and select Save Core Cell As... or
Save As... respectively.

Properties
Structure

Structure in Other Pane

[

Save As..,

Cut Module

Copy Module

Duplicate Module

Delete kModule

The Save As... function can also be used for built-in Core Modules. They are saved to the same
file format as Core Macros. One can use this to save built-in Core Modules with preconfigured
Properties, if desired.
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To load Core Cell and Core Macro files back, right-click on the background of the Primary
or Core Structure (for Core Macros/Modules the right-click has to be within the normal

Built-In Maodule
Library
Open Searchbox

Mewy Macro

Paste

Carnpact Board

Audia
Clipping
Clk Bundle
Contral
Convert
Ewvent Proc
Flovy
Logic
Math
Math Mod
Mermory

Saturator

Load ...

Similarly to the user library folder "Primary" for Primary level objects, there is a folder called
"Core" for Core level objects. The folders and the Core objects located in this folder will show
up in the Library submenu after a separator.

Notice that while Core Macros and Modules belong to the "Core" folder, the Core Cells
belong to the "Primary" folder, since they are inserted from the Primary level and respec-

tively need to be available in the Primary level context menu.
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3 Additional Connectivity Features

3.1 QuickConsts

QuickConsts are a lightweight alternative to Const Modules. To create a QuickConst do the fol-
lowing:

1. Right-click on a scalar input and select the Connect to New QuickConst.

Connect to Mew QuickConst %

Connectto Mew QuickBus

Pickup Distribution Bus...

Pickup Std. Distribution Bus

2. A new QuickConst is created (if the input is already connected, the old connection will be
deleted).
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3. The value and the type of the QuickConst can be adjusted in the QuickConst's Properties.
* % % Cell

Function Info

SIGNAL TYPE

FUMCTIOMN

The Properties show up whenever the QuickConst is selected.

1. To select a QuickConst, simply click on the QuickConst.

2. To delete a QuickConst, you can either select it and press [Del] or [Backspacel, right-click
on it and select Delete Connection, or click-and-drag from the input port into the Struc-
ture background.

Functionally the QuickConsts are fully identical to the ordinary Const Modules. However,
unlike the Const Modules, they cannot be copied and pasted. Additionally, multiple con-
nections to a QuickConst are not possible.

3.2  QuickBuses

QuickBuses are an 'invisible' alternative to the wires and can be used to reduce the connection
clutter within a Structure.

QuickBuses do not support cross-Structure connectivity. For cross-Structure connectivity

use Scoped Buses (see section 13.3, Scoped Buses).

To create a QuickBus, do the following.
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Right-click on an input or an output and select Connect to New QuickBus.
¥ > > re Cell

Connect to Mew QuickConst
Connect to Mew QuickBus

Pickup Distribution Bus... l"\5

Pickup Std. Distribution Bus

A new QuickBus with a default name (in this case "QBus") is created and the correspond-
ing QuickBus accessor is connected to the port.
¥ > » Core Cell

[Bus —&
+
-

The name and the type of the QuickBus can be adjusted in the QuickBus's Properties.

QuickBus

Function Infa

QuickBuses

REAKTOR 6 - - 42



Additional Connectivity Features

QuickBuses

The QuickBus itself is not visible in the Structure. What is connected to the port is not
the QuickBus itself, but the QuickBus accessor. Selecting an accessor (by clicking on it)
switches the Properties to the associated QuickBus.

QuickBuses are supported for all port types, not just the scalar ports as QuickConsts.

In order for the QuickBus to establish a connection between an output port and an input port it
has to be connected to both an input and an output. To connect a port to the existing Quick-
Bus, do the following.

1. Right-click on the port and select the respective QuickBus's name in the Con-
nect to QuickBus submenu.

Connect to Mew QuickBus

Send to Reception Bus..

Connect Ta QuickBus

2. Another accessor is created, thereby establishing a connection between the output and
the input. Both accessors are referring to the same QuickBus object and thus are connect-
ed to each other.

- #[Bus

REAKTOR 6 - - 43



Additional Connectivity Features

QuickBuses

The same QuickBus can be used to connect several inputs to one output. Simply right-click on
an input and select the QuickBus from the Connect to QuickBus submenu to establish an ad-
ditional connection to the same QuickBus:

- #[Bus

Two connections established via a single QuickBus.

While it is possible to connect several inputs to a single QuickBus, at most one output can be
connected to a given QuickBus at any given time. An attempt to connect a second output to
the same QuickBus will disconnect the previously connected output from the QuickBus.

A QuickBus that is not connected to an output will be 'default-connected' according to the
conventions explained in section 12.4.5, Connection Defaults. An input connected to a Quick-
Bus accessor is formally a connected input (regardless of whether there is an output connected
to the QuickBus or not), thus the default connection mechanism for this input is not active in
this case. The explicit usage of QuickBuses which are not connected to an output is not advis-
able in finished Structures.

QuickBuses can have the same name within the Structure, even though giving each
QuickBus a unique name is recommended. Duplicate names are automatically extended
with extra indices "(1)", "(2)", "(3)" etc. These extra indices are not a part of the name
and are merely a visual display feature, allowing you to distinguish between identically
named QuickBuses. In principle these indices are intended to be used exclusively in
temporary situations, such as after a QuickBus name collision upon copying and past-
ing. QuickBus name collisions in finished Structures are not recommended.
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QuickBus connections can only be used between ports within the same Structure. Therefore,
identically named QuickBuses from different Structures (if existing) represent completely differ-
ent QuickBus objects and do not generate a collision either. In the terminology of programming
languages, the QuickBus namespaces are per-Structure.

A QuickBus exists as long as there is at least one accessor associated with the QuickBus. The
accessors are deleted in the same way as other connections and QuickConsts.

Disconnecting accessors by clicking and dragging to the background works only for the accessors
at the input ports.

3.3  Scoped Buses

Scoped Buses allow invisible connections across several Structure layers. Unlike QuickBuses,
Scoped Bus connections are asymmetric in the following sense:

e A QuickBus connection is established between two (lightweight) accessors.

e A Scoped Bus connection is established between a single (heavy-weight) definition point
and one or multiple (lightweight) accessors.

The accessors connected to a definition point must be located within the definition scope. The
definition scope includes the same Structure as the definition point and the Macros contained
within that Structure (including the Macros contained within those Macros, etc.).

More strictly speaking the definition scope is the same solid area and all nested ones. See section
13.3.6, Solid Areas for more details.

3.3.1 Definitions

The definition points are provided in the form of built-in Modules and come in two different
flavors:
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e Distribution Scoped Buses: The definition point acts as the output side of a connection (the
signal flows from the definition point to the accessors). The input side of a connection is
represented by a scoped pickup accessor. There can be multiple scoped pickup accessors
connected to a single distribution bus. This is the most useful flavor of the two.

e Reception Scoped Buses: The definition point acts as the input side of a connection (the
signal flows from the accessor to the definition point). The output side of a connection is
represented by a scoped send accessor. The current implementation of REAKTOR Core al-
lows only single-reception Scoped Buses, which do not support more than one connected
scoped send accessor.

The connection classes supported by Scoped Buses in the current implementation of REAK-
TOR Core are scalar and Bundle. The Built-In Module > Scoped Bus menu allows you to create
the definition points of distribution and reception flavors within these connection classes.

Built-In Maodule Const
Libirary fath
Open Searchbox Bit

Mewy Macro Flows
Mernary
Paste

Scoped Bus % Distribution

Compact Board Bundle Bundle Distribution
Reception

Bundle Reception

Scoped Bus submenu for creating distribution and reception definition Modules

A distribution definition Module has an input which is supposed to be connected to a signal
source. A reception definition Module has an output which is supposed to be connected to a
signal's destination:
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Newly created scalar scoped distribution (left) and reception (right) Modules.

A newly created definition does not have a name and thus does not define a Scoped
Bus. In order to define a Scoped Bus, the definition must be given a nonempty name in
its Properties.

Both the distribution definition and reception definition Modules have a connection status in-
dicator that turns green when one or more accessors are connected to this definition. It turns
red in case of a definition conflict (see section 13.4.3, Definition Conflicts and Pickup Errors.).

A distribution definition of a Scoped Bus named "Bus" with a green (‘connected') connection status indicator.

3.3.2  Simple Scoped Access

In order to make a scoped connection to a definition point an accessor needs to be created
within the definition scope. For distribution buses a scoped pickup accessor (or simply 'pick-
up') needs to be created, for reception buses a scoped send accessor (or simply 'send') needs
to be created.

To create a scoped pickup accessor do the following:

REAKTOR 6 - - 47



1.

Additional Connectivity Features

Scoped Buses

Right-click on an input of the scalar or Bundle type and select Pickup Distribution Bus....

Connect to Mew QuickConst
Connectto Mew QuickBus

Pickup Distribution Bus... l,\\s

Pickup Std. Distribution Bus

A text entry field appears next to the input. Enter a nonempty name for the scoped pickup
accessor.

Cutoff| &F

Press [Enter] to create a pickup with the name you just typed in. If you want to abort the
creation of the pickup, press [Escl.

—er @

Ly Cutoff=eF
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Scoped sends are created in the same way, except that you have to right-click on an output
port:

- —a || 4
Connectto Mew QuickBus
Send to Reception Bus.. k‘

Creation of a scoped send.

The scoped accessors can be distinguished from QuickBus accessors by the 'broken' arrow next to
them:

—

Ly utoff—sF

A scoped accessor is looking for an identically named definition, within the scope of which the
accessor is located. The search is started in the same Structure (more correctly, in the same
solid area, see section 13.3.6, Solid Areas) where the accessor is located. If an identically
named definition is found, the accessor connects to that definition. If such definition is not
found, the accessor looks in the parent Structure (parent solid area), and so on. If the defini-
tion is not found at the topmost (Core Cell) level, the accessor fails to connect.

The following example demonstrates a pickup named "Cutoff" connecting to the identically-
named definition one level higher:
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L e EE— ] *>—ta
Ly Cutoff—eF

® Cutoff #— s Cutoffl I

A scoped connection.

A scoped accessor can be selected by a single left-click. Differently from QuickBuses, accessor
selection does not provide access to the bus's Properties.

A scoped accessor can be renamed by double-clicking it. Renaming is confirmed by pressing
[Enter] or aborted by pressing [Esc], just like when giving an accessor a hame upon creation.
An accessor cannot have an empty name. If renamed to an empty name, the accessor is delet-
ed. Otherwise, the deletion of scoped accessors can be done in the same way as for other con-
nections and QuickBus accessors.

Differently from QuickBus accessors, which always stay connected to the same Quick-
Bus and where the rename function renames the bus itself and not the accessors, the
name of a scoped definition or of an accessor applies only to this specific definition or
the accessor. If a scoped accessor or definition is renamed, it gets reconnected to a dif-
ferent definition or to a different set of accessors according to the new name.

3.3.3  Scoped Connection Errors

The scoped name lookup completely disregards the definition flavor and type (in programming
language terminology, all Scoped Buses share the same namespace). If a scoped accessor
finds a definition with a matching name that it cannot connect to (because the flavor and/or
type are incompatible), it will fail to connect. Equally a scoped accessor fails to connect if it
does not find a definition of a matching name at all. Such accessors are highlighted in red:
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——F —

—er @

—F

# [utoff #-————= Cutoffl

A scoped pickup accessor that fails to connect.

Aside from highlighting the accessor itself, the Core compiler highlights the parent Macros
containing this accessor. The highlighting of Macros goes up in the Macro hierarchy as far as
the 'error locality area' reaches.

The error locality area is (approximately) defined as the area that can affect the accessor error.
E.g. if an accessor does not find a definition of a matching name, the parent Macros will be
highlighted all the way up to the Core Cell's Structure. If, on the other hand, the error is due to

a type or flavor incompatibility, the highlighting will go up only to the level of the respective
bus definition.

3.3.4  Name Collisions and Definition Overriding

Two identically named definitions within the same Structure produce a name collision, regard-

less of their types and flavors. The connection status indicators of the conflicting definitions
turn red:
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Two conflicting definitions.

It is however possible to have identically named definitions if one Structure is a (direct or indi-
rect) parent of the other. In this case the lower-level (the 'more nested') definition overrides the
higher level one. Overriding means that from this Structure on, the new definition will be used
by the respectively named accessors.

The overriding effect is naturally following from the described earlier lookup process for a name-
matched definition from the accessor. Clearly, the lookup process will find the 'most nested' defi-
nition above (or at) the accessor's level.

Identically named definitions in 'unrelated' Structures (that is, when neither of two different
Structures is the parent of the other) do not produce a conflict, as their name visibility scopes
do not overlap.

3.3.5  Parent Mode Accessors

Sometimes, when overriding a definition, the new definition needs to be specified 'in terms' of
the old definition. This makes it necessary (or at least highly desireable) to be able to access
the old definition within the Structure of the new definition. This can be done by using a pa-
rent-mode accessor.

The accessor parent mode is specified by typing two dots in front of the accessor's name (when
creating or renaming the accessor). The parent mode causes the accessor to ignore the defini-
tion within the same Structure and start the lookup for the matching definition one level high-
er, from the parent Structure. So, in case of a definition override, a parent-mode accessor will
connect to the old rather than the new definition.
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Ly .. Cutoff-= »——a Cutoffl I

An example of parent-mode accessor usage

In the above example there is an (overriding) redefinition of the "Cutoff" Scoped Bus to a
halved value. If the scoped pickup accessor on the left had not been set to parent mode, it
would have connected to the new definition, creating a feedback loop (see section 14.10,
Feedback Connections for a discussion of feedback loops):

L. Cutoff—e #—a Cutoffl O

An example of a logical error caused by the missing parent mode of the accessor.

3.3.6  Solid Areas

If a Scoped Bus is defined inside a Macro, the definition scope does not include the Macro's
parent Structure. This makes it impossible to create a Macro the purpose of which is to define
a Scoped Bus. This restriction can be lifted by turning off the Solid property of the Macro. In
this case the Scoped Bus definitions contained directly within the Macro become visible on the
parent level:

Math Consts

314150—8 pid 1

L pi—s
Le—s

Using a non-solid Macro to define Scoped Buses for the parent Structure.
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The Macro solidity also affects the resolution of the feedback loops (see section
14.10.3, Nonsolid Macros and Feedback Loops).

Whether using the non-solid Macros to define Scoped Buses within the parent Macro's context
is good practice or not is questionable, since in this case the definitions are not visible at the
top Structure of the definition scope. In any case this possibility should be used with care.

The description of the Scoped Bus functionality up to this point in the manual is ap-

® proximate. It is only correct assuming that all Macros are solid. This assumption was
done for simplifying the material presentation. A precise description of the Scoped Bus
functionality follows below.

A Precise Description of Scoped Bus Rules

The Scoped Bus mechanism of REAKTOR Core works in terms of the solid areas rather than in
terms of Structures. A solid area is the area bounded by the boundaries of solid Macros. If a
Macro is solid and so are all directly nested Macros, then the Macro's Structure constitutes a
solid area. If all Macros in a Core Cell are solid, then there is no difference between Structures
and solid areas. If in such a Core Cell one Macro is made non-solid, then the solid boundary
between this Macro and its parent Structure disappears, meaning that the parent Structure
and the Macro's Structure now constitute one solid area, etc.

Consequently, the following applies:

e The scope of a definition starts at the solid area of the definition and extends to all nested
solid areas, unless overridden by another definition in a nested solid area.

e Two identically named definitions within one solid area produce a conflict.

e A parent-mode accessor looks up for the matching definition starting from the parent solid
area, rather than the parent solid Structure.
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3.3.7  Name Normalization and Escaping

Normalization

Since scoped connections are established by name, it is very important that the names are vis-
ually distinguishable in the Structure. For that reason REAKTOR Core automatically collapses
all whitespace within the names:

e Whitespaces in the middle of a name are collapsed to a single space.
e Whitespaces at the beginning and at the end of a name are eliminated completely.

This process is referred to as noermalization.

Escaping

The dot symbol has a special meaning in the scoped accessors. It is used to specify the acces-
sor parent mode. It is also used as a fiber separator in the Bundle subfiber pickup accessors
(see section 13.4.4, Scoped Bus Subfiber Pickups). At the same time it is still possible to de-
fine a Scoped Bus with one or more dots within its name. In order to be able to access such
definition the accessor must be able to specify that a certain dot should not be treated as a
special syntactical element (parent mode specifier or fiber separator), but an ordinary dot. This
possibility is implemented in the form of the so called escaping.

In order to specify that a certain dot in the accessor name is an ordinary dot, the dot must be
prefixed by a backslash.

The backslash is referred to as the escape character.

The backslash thereby also obtains a special syntactical meaning and thus needs to be escaped
itself if an ordinary backslash character is being meant.
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Dot escaping in an accessor.

In the above case the Scoped Bus name ("B.u.s.") contains three dots. In the accessor each of
these dots needs to be prefixed by a backslash.

Escaping is only applied to accessors, not to definitions.

If some special symbol within an accessor name is used at an inappropriate position (e.g. three
dots are used in a row at the beginning of an accessor), then REAKTOR Core will not 'approve' it
as a special symbol and will automatically escape it, explicitly highlighting its non-special mean-

ing.

3.4  Bundles

Bundles are a connection type, in which each 'cable' has multiple wires internally. These inter-
nal wires are referred to as the Bundle fibers.

3.4.1  Bundle Pack

In order to put several fibers into one Bundle use a Built-In Module > Bundle > Pack:
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A newly created Bundle Pack Module.

A newly created Bundle Pack Module has no inputs and one Bundle output. Having no inputs
means that the outgoing Bundle has no fibers. In order to add fibers to the Bundle, navigate
into the internal Structure of the Pack Module by double-clicking on it, in the same way as it is
done with Macros. The Pack Module's internal Structure will show up:

The empty internal Structure of a newly created Pack Module.

The only editable part of the Pack Module's internal Structure is the input area on the left. The
inputs correspond to the Bundle fibers and are referred to as fiber definitions. Currently, only
scalar and Bundle fiber definitions are supported:
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Ouvrier Properties Bundle Fiber

Parent

Parent in Other Pane
Swrap Pares

Close Fane
Paste

Compact Board

The Pack Module's input area context menu.

The fiber definitions of Bundle type allow to nest Bundles.

The fiber definitions created in the Pack Module's internal Structure show up as inputs on the
outside of the Module:

Fiber definitions and the corresponding inputs of the Pack Module.

Each fiber definition has to be given a name. Definitions with empty names cannot be
picked up on the other side of the Bundle.
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Similarly to the Scoped Bus names, the fiber names are automatically normalized.

Most commonly the output of the Pack Module is connected to:

e a Macro output port from the inside of a Macro (if the Pack Module is contained within a
Macro and the Macro output interface is employing a Bundle), or

e a Macro input from the outside of a Macro, or

e a scoped distribution definition.

3.4.2  Bundle Unpack

In order to access individual fibers within a Bundle use Built-In Modules > Bundle > Unpack:

TI=
H

A newly created Bundle Unpack Module

A newly created Bundle Unpack Module has a Bundle input and no outputs. The Bundle input
is supposed to be connected to the Bundle, the fibers of which need to be accessed. The out-
puts of the Unpack Module correspond to the fibers which need to be accessed and are creat-
ed as outputs in the Unpack Module's internal Structure. They are referred to as fiber pickups.

® Fiber

Fiber pickups and the corresponding outputs of the Unpack Module.

REAKTOR 6 - - 59



Additional Connectivity Features

Bundles

The fiber pickups need to be given names identical to the names of the fibers that are
being picked up. They also need to have a compatible type.

It is not necessary to pick up all the fibers of the Bundle in the Unpack Module. Only a subset of
the fibers may be picked up. E.g. in the above example the "Also a Fiber" fiber is not being picked

up. The pickups do not have to be arranged in the same order as definitions either.

3.4.3  Definition Conflicts and Pickup Errors

Definition Conflicts

The fibers within a Bundle are getting distinguished by their name. Thus, a Bundle should not
have two identically named fibers. If it does, then these fibers generate a conflict error:

A definition conflict created by two identically named fibers.

A conflicting definition does not generate a fiber in the Bundle.
More precisely, all conflicting definitions of the same name generate a phantom fiber in
the Bundle. Phantom fibers cannot be picked up, but are participating in Bundle merg-

ing (see section 13.4.5, Bundle Merging) and splitting (see section 13.4.6, Bundle
Splitting).

Definitions with empty names are considered void and do not conflict with each other.
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Pickup Errors

An attempt to pick up a missing fiber, a phantom fiber or an incompatible fiber will generate a
pickup error:

Pickup errors generated by missing and incompatible fibers.

The above picture shows two errors:

e The error in the pickup "B" is due to the type incompatibility (since the fiber "B" is of
Bundle type, while the pickup is scalar).

e The error in the pickup "C" is due to the missing fiber (since the fiber "C" is not present in
the incoming Bundle).

Pickup errors cause the Bundle wire to be highlighted in red all the way up to the definitions.
This is done for use cases such as connecting together two library Macros by a Bundle wire. If
the Bundle output of one Macro is incompatible to the Bundle input of the other Macro, the
wire between the Macros will be highlighted in red. The wire highlighting also helps tracing the
erroneous connection all the way between the definitions and the pickups in both directions.

This highlighting approach follows the same idea of the error locality discussed in section 13.3.3,
Scoped Connection Errors.
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3.44  Scoped Bus Subfiber Pickups

As a convenience feature, when accessing a Bundle Scoped Bus, the scoped pickup accessor
can access individual fibers of a Bundle. To do this, simply type the fiber name after the bus
name, separated by a dot in between:

Scoped subfiber pickup.

In case of nested Bundles, subfiber pickups can be chained within one scoped pickup:

L3 Bus.B.C+= .

Scoped nested subfiber pickup.

There is no corresponding feature for scoped send accessors.
3.4.5 Bundle Merging

As a means of Bundle manipulation, two Bundles can be merged together into a single Bundle
by the Built-In Module > Bundle > Merge:
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Merging two Bundles into a single one.

The merged Bundles should not have identically named fibers, otherwise a merge conflict will
occur. The conflicting name is turned into a phantom fiber in the output Bundle and cannot be
picked up:

A Bundle merge conflict.

A phantom fiber can generate further merge conflicts downstream if merged with identically
named fibers.

Override Merging

By selecting an overriding input in the Bundle Merge's Properties the Bundle Merge Module
can be switched into override mode:
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Function  Info

FUMNCTION

Owerriding Input Upper =

An override mode Merge.

This causes the fibers at the overriding input to take precedence over the fibers of the other
input in case of a name conflict.

The overriding mode is also useful as a means to provide default definitions for optional Bun-
dle fibers in a library or framework Macro:

Process

Using the override mode to provide defaults for optional fibers.

In the above example the incoming Bundle is expected to contain certain fibers, among which
the "A" fiber is optional. If the "A" fiber is not present in the incoming Bundle, a default scalar
fiber of zero value is inserted into the Bundle before it goes further into the "Process" Macro.

In the 'providing the defaults' use case the main Bundle has to go into the overriding

input of the Merge Module, while the defaults should be connected to the other (‘lower
priority') input.
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3.4.6  Bundle Splitting
The reverse of Bundle merging is Bundle splitting, done by Built-In Module > Bundle > Split:

A Bundle Split Module.

The Bundle that needs to be split should be connected to the lower input of the Split Module.
The upper input of the Split Module is the template input. It controls the routing of the split
fibers. The routing control is purely name-based. The fibers in the lower input for which there
is an identically-named fiber in the template are routed to the upper output. The remaining fi-
bers are routed to the lower output.

One can explicitly 'route off' certain fibers from a Bundle by connecting a 'dummy' Pack Mod-
ule to the template input:

'Routing off' of fibers "A" and "B" from the Bundle.

Another use case is to remove the fibers that have been 'temporarily' merged into the Bundle:

Removing the temporarily merged 'default fibers'.
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In the above example it is important that the Sp/it Module is using the original Bundle
as the template. A possible alternative implementation using the defaults as the tem-
plate will not work correctly if the default fibers are already present in the input Bundle
of the Macro, because these fibers are routed off by the Split:
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4 Processing Model of Core

4.1 Events

A fundamental concept of signal processing in Core is the event. Similarly to the Primary level,
an event within REAKTOR Core simply means that at some point in time a value has been gen-
erated at some output port. This value is immediately transmitted further downstream along
the wires (or connections of other kinds), which is referred to as 'an event is being sent from
the output to the connected inputs.' The downstream Modules then usually generate further
events at their outputs in response to the incoming events.

The default event triggering convention in Core is the following: a Module sends an output event
in response to an incoming event at any of its inputs.

This convention is most commonly used for the math processing Modules such as the ones
found in Built-In Module > Math and Built-In Module > Bit menus. See section 15.1, Expres-
sion Computation for an example of efficient use of this convention. Nevertheless, there are a
number of other different triggering conventions used for certain groups of Modules or individ-
ual Modules (constants, Core Cell inputs, Modulation Macros, audio processing Macros, audio
generation Macros etc.). These conventions are described in the respective areas of the man-
ual.

Differently from Primary, within REAKTOR Core Structures there is no distinction be-
tween audio- and event-mode connections. In Core everything is an event. An audio sig-
nal is simply consisting of events regularly sent at the sampling rate.

Conversion between Primary and Core Signals

The conversion between Primary audio/event signals and Core event signals is done according
to the following:

e The audio-mode input ports of Core Cells produce events at the sampling rate of the Pri-
mary Ensemble.

e The event-mode input ports of Core Cells forward Primary level events arriving on the out-
side of the Core Cell to the Core Cell's internal Structure.

Events
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Respectively:

e The audio-mode output ports of Core Cells simply make their internal (Core level) value
available to the external Primary level. This internal value is simply the value of the most
recently arrived event.

e The event-mode output ports of Core Cells simply forward the internally arriving events to
the external Primary level.

The Primary level does not support simultaneous events (see section 14.2, Processing
Order for the discussion of simultaneous events in Core). If several Core events arrive si-
multaneously at the event-mode outputs of a Core Cell, they will be sent to the outside
Primary Structure consecutively, one after the other. The order of sending is 'top-to-bot-
tom', according to the visual ordering of the Core Cell output ports. The events are sent
immediately upon the completion of the respective handler (see section 15.6.1, Core
Cell Handlers). Particularly, if the events are generated from the audio handler, they will
be sent before any further audio processing is done in the Primary Structure.

Event Processing and Triggering Example

The following example Core Cell Structure implements an event signal inverter Core Cell:

A simple audio inverter Core Cell.

The Structure consists of an event-mode input port Module, an event-mode output port Module
and a Core level inverter Module connected in between, where the latter can be found under
Built-In Module > Math > -x. Since in Core there is no difference between audio and events,
the built-in Core level inverter Module does not need to be configured (neither automatically
nor manually) to an audio or an event-mode.
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The processing of an incoming Primary level event by the above Core Cell is happening like fol-
lows:

1. A Primary level event is arriving at the Core Cell's event input

2. The Core Cell's event input is converting the Primary event into the Core event, which is
then sent from the output of the input port Module inside the Core Structure.

The event reaches the input of the -x Module.
The -x Module is inverting the value and sends the result as its output event.
The event reaches the input of the Core Cell's output port Module.

The Core Cell's output port is converting the Core event into the Primary event and sends
it further within the Primary level.

The above Core Cell can be turned into an audio inverter Core Cell by simply reconfiguring the
input and output port Modules of the Core Cell to the audio-mode. In this case the input port
Module will send the events regularly at the audio rate. Configuring the Core Cell's ports to an
event-mode input and an audio-mode output is also possible.

ook w

One also can configure the input to the audio-mode and the output to the event-mode. In this
case the expected behavior of the Core Cell is to send the Primary level output events at an
audio rate. However, since the Primary level handles the events differently from Core, such a
dense event stream on the Primary level will typically cause a noticeable CPU overhead. In or-
der to avoid accidentally doing this by mistake, the Core Cell's output port has the Allow Audio
Events property, which is disabled by default. When disabled, it will prevent the events origi-
nating at the Core Cell's audio-mode inputs (or another audio rate source, such as SR.C and
CR.C) from being sent to the Primary level, blocking the events completely. The property has
no effect on audio-mode ports.

Events derived from an audio rate source by routing (e.g. custom CR.C of a lower rate) will be
equally blocked. On the other hand, the events derived from the event-mode Core Cell ports are
not blocked. The initialization event (see the discussion of the initialization event in section 14.4,
Initialization), including the initialization event obtained from the audio-mode Core Cell ports, is
not blocked either.

Events
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4.2  Processing Order

As long as a Core event is processed exclusively in a serial fashion, there is no difference be-
tween Primary and Core event processing. The event is simply propagated downstream from
one Module to the other. There is however a fundamental difference if the event propagation
path splits into several branches.

On the Primary level an event that is sent to more than one destination is forwarded to each of
these destinations in turn, one destination after the other. If the event paths later merge back
again, then, instead of one event arriving at the mergepoint, there are two or more, depending
on how many parallel paths the event was split into before merging back (for details about Pri-
mary level event processing, see the Building in Primary document).

In Core (logically seen) an event is sent to all such parallel destinations simultaneously on all
paths. The following Core Cell Structure illustrates this:

A Core Cell Structure illustrating the simultaneity of parallel events in Core.

The purpose of this Core Cell is simply to double the values of the incoming events. Instead of
multiplying the values by 2, the signal's value is added to itself by using the adder Module
(Built-In Module > Math > +).

Each incoming event is sent to the two inputs of the adder on two parallel paths. In Primary,
the incoming event would first arrive at one input of the adder, producing an output event at
the adder's output, and later it would arrive at the other input of the adder, producing another
output event at the adder's output. Thus, for each incoming audio event the adder would have
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generated two output events. This would lead not only to a doubling of the value, but also to a
doubling of the count of the incoming event. In Core, the event arrives simultaneously at both
inputs of the adder, so the adder produces a single output event.

The simultaneity of parallel events is of course extended to more complicated Structures, e.g.
like the following one:

Another Core Cell Structure illustrating the event parallelism in Core.

In this Structure the event is going through the absolute value Module on the upper path and
through the inverter on the lower path, and then both paths are merged by the adder. Of
course, internally one of the two parallel Modules (the absolute value and the inverter) will be
processed before the other. However, both the output event of the absolute value Module and
the output event of the inverter Module will arrive at the adder's inputs simultaneously, thereby
producing one event at the adder's output.

Thus, logically seen, it is impossible to tell which of the two parallel Modules (the absolute val-
ue and the inverter) has been processed first. From the formal point of view, both Modules can
be considered as being processed simultaneously.

The processing order rule in Core is the following. If two Modules are connected by a
unidirectional path (that is one can start at one of the Modules and reach the other one
by always going only 'downstream' or only 'upstream') then the upstream Module is proc-
essed before the downstream one. If there is no unidirectional path between the two
Modules, then their relative processing order is undefined. Such unordered Modules can
be considered as 'simultaneously processed' ones.

The 'simultaneous processing' paradigm is not applicable to the explicit accesses to the memory
by the OBC Modules. Memory accesses from the unordered Modules are serial and unordered.
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4.3  Object Bus Connections (0BC)

Explicit memory storage is handled in Core by the Read and Write Modules performing the
memory reading and the memory writing operations respectively. These Modules can be found
under the Built-In Module > Memory menu. For the purpose of identifying the storage items
referred to by these Modules, Core uses a dedicated connection class, called OBC (Object Bus
Connection):

A simple event accumulator Core Cell.

In the above Core Structure there is a Read Module on the left, followed by an adder, followed
by a Write Module. The direct connection between a Read Module and a Write Module is an
OBC connection. It means that the Read and the Write Modules access the same storage (or
the same variable, in terms of text-based programming languages). This storage is implicitly
created by the mere fact that the Read and the Write Modules want to access some storage.
Had there been no OBC connection between the Read and Write Modules, they would have ac-
cessed two independent storage items.

All Read and Write Modules connected together by OBC connections access one and the
same memory storage (as long as there are no special OBC Modules, like e.g. the /ndex
Module in between them).

The above Structure implements a simple event accumulator and works as follows:

1. Anincoming event from the Primary level is converted into a Core event by the input Mod-
ule and is sent to the Read Module and to the adder.
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2. The event arrives at the upper input of the Read Module. This is the clock or triggering
input of the Read Module. In response to this clock event the Read Module reads the val-
ue from the memory and sends it from its upper output (the initial value of the memory is
zero).

3. The event from the input Module and the event from the Read Module simultaneously ar-
rive at the inputs of the adder. The adder computes the sum and sends it from its output.

4. The output event from the adder is sent to the Core Cell's output and also to the Write
Module. The Write Module stores the new value of the accumulated sum in the memory,
while the output forwards the same value to the Primary level.

The arrays and array connections which are a special kind of OBC are discussed separately in sec-
tion 14.7, Arrays.

Memory Access Ordering

In typical cases the memory accesses are naturally ordered by the OBC connection between
the Read and the Write Modules. However, it is possible to construct Structures where these
accesses are not ordered relative to each other:

Unordered memory accesses.

In the above picture the two Write Modules are ordered relative to the Read Module, but are
not ordered relative to each other. If an event comes simultaneously on both wires, then it is
not defined which value will be written first and which second. Such Structures are generally not
recommended, unless the access order is explicitly unimportant.

As in the other cases of unspecified behavior, it is highly unrecommended to rely on the

de-facto ordering of conceptually unordered OBC Modules, even if this ordering seems
consistent.
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As a general rule, it is recommended to ensure the correct ordering of the OBC Modules
(accessing the same memory) by arranging them serially along one and the same OBC
wire.

Macro boundaries by themselves do not ensure any ordering (please see section 14.7.4,
Advanced OBC Ordering for a more detailed explanation).

4.4 Initialization

Upon loading, before the regular processing begins, the Core Structures are getting initialized.
The Core Cell initialization is performed as a part of the Primary level initialization process
(please see the Building in Primary document for more information).The Core Cell initialization
runs in the following steps.

e Firstly, all writable memory of the Core Cell is reset to zero. This includes the states of the
output ports and the OBC storage.

e Then, an initialization event is sent simultaneously from all initialization event sources,
which include the following.

o Audio-mode Core Cell inputs. These always send the initialization event. The value of
the event is equal to the value available on the outside of the Core Cell at the moment
of the Core Cell's initialization.

o Event-mode Core Cell inputs. These send the initialization event if and only if there is
a Primary level initialization event coming from the outside at the moment of the Core
Cell's initialization. The event's value is equal to the value of the incoming Primary
level event.

o Constants and QuickConsts (also including unconnected inputs without special de-
fault meaning as well as scoped and Bundle pickups which failed to connect). These
always send the initialization event. The value of the event is equal to the constant's
value. The constants never send any other events afterwards.

e After that, the Primary level initialization process might send additional events after the
Core's initialization event is finished. From a Core perspective these events are regular
events, not initialization events.
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Initialization Example

The following Core Cell Structure demonstrates the effects of the initialization process (the
Structure has a bug, which is embedded there for the demonstration purposes):

A (faulty) event counter Core Cell.

At the first glance, this Structure should implement an event counter (notice the integer mode
of the Modules used in the Structure). However, this Structure has a bug. If no Primary events
have ever been sent to the Core Cell's input, the output value of the Core Cell (and the value
stored internally in the OBC memory of the counter) is still one rather than zero. Furthermore,
even though there is no incoming initialization event on the Primary side, the event counter
Core Cell sends an initialization event (of value 1) from its Primary level output.

The reason for this are the details of the Core Structure initialization which runs as follows:

1. The shared OBC storage of the Read/Write Module pair and the output port states are ze-
roed.

2. The initialization event is sent from the constant "1" Module. Assuming there is no incom-
ing initialization event from the Primary level at the Core Cell's input, there are no other
initialization event sources in the Structure.

3. In response to the incoming event from the constant Module the adder computes the sum
of the input values, where the lower input value is obtained from the just zeroed output of
the Read Module. Thus, the adder outputs a value of 1.

4. The value of the sum is written into the OBC storage and is sent to the Core Cell's output.

Such problems can be avoided by using latches (discussed in section 14.5, Clocks and Latch-

es) and/or Modulation Macros (discussed in section 14.6, Modulation Macros).
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4.5  Clocks and Latches

A factory library Latch Macro is available under Library > Memory > Latch:

A Latch Macro.

An integer version of the latch is available in the same menu under the name |Latch.

The upper input of the Latch Macro is the value input. The lower input of the Latch Macro is
the event or the clock input. The output combines both into one event where the value is taken
from the upper input and the clock or the triggering is taken from the lower input.

The Latch Macro can be used for two different purposes:

e Replacing a value of an event with another value:

e Delaying a sent value until a certain event (clock) occurs:

Both purposes simply represent two different viewpoints on one and the same process.

The second usage purpose (delaying a value) is the reason for the Latch Macro's icon and for the
alignment of the Latch Macro's ports.

The internal Structure of the Latch Macro is very simple:
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The internal Structure of the Latch Macro.

In this Structure it is imperative that the Write Module precedes the Read Module in the OBC
chain. This ensures that if the value and the clock events arrive simultaneously at the Latch
Macro's inputs, the value will be used to generate the output event.

The opposite ordering (the Read Module preceding the Write Module) is used to build the one-
sample delay (z/) Macro discussed in section 14.10.4, Resolution Mechanism.

The compiler recognizes the 'Write Module followed by a Read Module OBC pattern and
treats it in special, optimized way. Depending on the circumstances, using a Latch Mac-
ro at a given position in a Structure will produce more efficient code than without using
it. As a general rule, the Core Structures should employ latches where logically appropri-
ate without attempting to minimize their amount.

Usage Examples

The faulty event counter discussed in section 14.4, Initialization could have been fixed in one
of the two following ways using the latches.
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e Use an integer event accumulator Structure (similar to the float event accumulator dis-
cussed in section 14.3, Object Bus Connections (OBC)) and use an integer latch (/Latch)
Macro to replace the values of the incoming events with 1:

e Start with the faulty Structure discussed in section 14.4, Initialization and use a Latch
Macro to make sure that the output event of the constant Module does not trigger the ad-
dition:
*

Notably, the two Structures are pretty much identical, differing only by the specific pickup
points of the clock signals for the Latch and the Read Module.

The clock inputs completely ignore the incoming signal's value. The Core compiler is aware of
that and drops out the respective computations in the incoming signal's path if these values are
not needed otherwise. Particularly, the compiler will drop a value conversion from int to float if an
int signal is used at a float clock input. For that reason it does not matter whether a clock input is
configured to int or float type. The convention used in Core however is that all clocks are float.
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The most appropriate way to fix the event counter is by using Modulation Macros, dis-
cussed in section 14.6, Modulation Macros.

4.6  Modulation Macros

The basic math operation Modules follow the standard Core triggering convention: any input
triggers an output event. Sometimes a different convention is desired, where some inputs
should not trigger the output. This convention is implemented in the Modulation Macros,
found under Library > Math Mod (for Math Modulation).

The following alternative implementation of the event doubler Core Cell from section 14.2,
Processing Order illustrates the concept of Modulation Macros:

An alternative implementation of the event doubler Core Cell using a modulation multiplier.

The Macro in the middle is the modulation multiplier, available under Library > Math Mod >
x mul a. If one of the usual built-in multipliers had been used instead, the Structure would
have had the same bug (for exactly the same reason) as the event counter in section 14.4, Ini-
tialization. With the modulation multiplier, the constant Module does not trigger the addition,
thus the Structure does not have a bug.

The name 'modulation multiplier' comes from the use case where the amplitude of an event
stream is being modulated by some other 'gain' signal. Clearly, in this case it is not desired
that the events of the 'gain' signal trigger the multiplication:
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Gain

Modulation of the amplitude of an event stream

This use case is also the reason for the icon and the port alignment of the Macro. The arrow in
the icon corresponds to the modulation signal input. Additionally, in the name of the Macro
and in the labels of the ports the modulation inputs are denoted with the letters from the be-
ginning of the Latin alphabet ("a", "b", ..).

Occasionally the opposite to the modulation concept is used: the tapping. While the
modulation inputs are inputs that are explicitly declared as non-triggering, a tapping in-
put is explicitly declared as triggering (whereas the remaining inputs are assumed non-
triggering by default).

The internal Structure of the modulation multiplier is using a Latch Macro to prevent the lower
input from triggering the computation:

xmul a

The internal Structure of the modulation multiplier.

Another good illustration of Modulation Macro usage is yet another way of fixing the event
counter of section 14.4, Initialization, besides the two bug-fixing approaches discussed in sec-
tion 14.5, Clocks and Latches. The fix is using an integer modulation adder, which is available
under Library > Math Mod > Integer > Ix + a:
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A bug-fixed event counter using a modulation adder.

4.7  Arrays

REAKTOR Core supports arrays as a special kind of OBC storage. While ordinary OBC storage is
implicitly defined by the mere fact of using it (by reading or writing), the arrays need to be ex-
plicitly defined by placing an array Module into the structure. There are two array flavors:

e Writable array (available under Built-In Module > Memory > Array): The number of array
elements is specified in the Properties. As with all writable memory, writable arrays are
zero-initialized upon initialization.

e Read-only array or Table (available under Built-In Module > Memory > Table): The table is
supposed to be prefilled by the Structure builder using the Table Editor available from the
Table Module's Properties.

The array memory is allocated per voice. Thus an array of 1024 floats in a 16 voice set-
ting needs a total memory for 16*1024=16384 floats, which, considering that each
float needs 4 bytes of storage, is equal to 64 Kbytes.

The read-only tables are allocated just once and are not multiplied with the number of
voices. Furthermore, multiple tables sharing exactly identical sets of data are internally
combined into a single table. Thus having multiple copies of the same table Module
containing a large table does not noticeably increase the memory usage.
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The output port of the Array or Table Modules is of a special array 0BC type (which is further
subdivided into int and float types with variable float precision). Thus a Read or a Write Mod-
ule cannot be directly connected to an array. In order to be able to read or write into an array,
a single array element needs to be selected first for access.

A Macro port of the Latch class can be configured to the array connection mode in the Properties.

4.7.1  Array Indexing

The array element selection is performed by using the /ndex Module (Built-In Module > Memo-
ry > Index):

An Index Module.

e The lower input of the /Index Module is of the array OBC type and is supposed to be con-
nected (directly or via some Macro ports and other connectivity features) to the array to be
accessed.

e The output of the /ndex Module is of the usual (latch) OBC type and is supposed to be
connected, directly or indirectly, to one or more Read and/or Write Modules.

e The upper input of the /ndex Module is of scalar int type. An incoming event at this input
causes a selection of an array element of the corresponding index for the OBC output of
the Index Module.

The indexing is zero-based. That is the valid index range is from O to N-1, where N is

the array size.

The result of accessing the array elements out of the valid index range is unspecified, except that
such accesses should not cause memory corruption or crash REAKTOR.

Arrays
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In the current implementation of the Core compiler the safety of the out of range index

® accesses is ensured by internally clipping the index value (in the unsigned integer
mode). However, as with other unspecified behavior, the specific details of this safety
mechanism should be never relied upon. Correctly built REAKTOR Core Structures
should never use out of range index values.

Sometimes it is convenient to be able to automatically determine the size of an array. This func-
tion is provided by the Built-In Module > Memory > Size [1 Module. The Module outputs the total
number of the array elements.

The Index Module rarely should be used directly. Typically Read [] and Write [] Macros should
be used instead. For the sake of illustration of the Index Module's functionality the following
two cases are presented:

Usage of raw Index Modules to access array elements (unrecommended).

In the above picture the two /ndex Modules are used to access the array elements with the in-
dices 7 and 8 respectively, where the 7th element is accessed for reading and the 8th element
for writing.

In principle, it is possible to attach a Read and a Write Module to the same /ndex Module, e.g.
in series. In this case they are obviously accessing the same array element.

A Read and a Write Module sharing the same Index Module (untypical and unrecommended).
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Neither of the two cases is a recommended way to access the array.

4.7.2  Read[] and Write [] Macros

The array accesses typically should be done by using the Read [] and Write [] Macros available
under Library > Memory.

e The Read [] Macro has a clock input, an index input and an array OBC input. The clock
input triggers the array reading operation at the specified index, sending the read value at
the upper output of the Macro.

e The Write [] Macro has a value input, an index input and an array OBC input. An incoming
value at the write input causes a write operation at the respective index.

It would have been possible to implement the Read [] Module without the clock input, by using
the event at the index input as the triggering signal for the reading operation. Besides being in-
consistent with the Write [] Macro this would have caused unnecessary CPU overhead if the read-
ing is performed without an actual change of the index. With the index input being separate, the
(rather small) CPU overhead associated with the indexing is occurring only in response to the

events at the index input.

The array OBC inputs and outputs of the Read [] and Write [] Macros are supposed to be used
to order the array accesses relatively to each other:
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An example of the ordering of read and write accesses to an array.

4.1.3  Table Specifics

The Table Module works pretty much as an usual array, except that writing into the table is not
possible. The tables also have specific properties.

e FP Precision: In case the table contains float data, this configures the precision of the
outgoing float OBC connection type (and thus the precision of the compatible Read ac-
cesses). The precision of values internally stored in the table is not affected by this set-
ting.

The Read []and Write [] Macros can be connected to a table with a non-default FP precision by
changing the FP precision setting of the Read [] and Write [] Macros.

e Table Editor: Calls up the table editor, which allows to fill the table with values.
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The Table editor.

(1) Create/Resize Tabhle: This button allows you to configure the table's data type and size and
to pre-fill it with a specified initial value.

(2) Import Table Data: This button allows you to load the table from a file. A number of audio
and text file formats are supported, where the latter can be used to import special numeric ta-
bles prepared in other software.

(3) Layout: These buttons turn the numeric display and the wave display on or off.
(4) Wave display: The wave display displays the contents of the table as a wave.

(5) Numeric display: The numeric display can also be used to edit the individual values in the
table.
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474  Advanced OBC Ordering

Some advanced OBC ordering topics can be nicely illustrated by the internal Structure of the
Read [] Macro:

The internal Structure of the Read [1 Macro.

The function of the /ndex and Read Modules is clear. The third Module (the one next to the
OBC output of the Macro) is the R/W Order Module (available under Built-In Module > Memory
> R/W Order).

The R/W Order Module is also used inside the Write [] Macro at the similar position.

Upon the first look this Module might seem to be completely redundant, because the Read []
Macro could have been implemented without it:

A faulty implementation of the Read [1 Macro without R/W Order.
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However, in this case the OBC output of the Macro is not ordered relatively to the Read Module
inside the Macro. This means that Modules and Macros (such as e.g. a Write [] Macro) con-
nected to this OBC output will not be ordered relative to the reading operation.

The R/W Order Module inside the Read [] Macro does nothing more than providing a formal
ordering between the Read Module and the OBC output of the Macro, due to the mere fact that
the Read Module is connected to its upper input. The lower input of the R/W Order Module
simply forwards the incoming OBC connection to the output.

The R/W Order Module can also be used for explicit ordering of non-array OBC connections, al-

though there such need is much less likely to occur.

The need for the explicit ordering by the R/W Order Module is not affected by the setting of the
Solid property of the containing Macro. This might be improved in future versions of REAKTOR

Core (without loss of compatibility with older Structures).

4.8 Routing and Merging

The Router Module (Built-In Module > Flow > Router) is used to direct the event flow to one of
two alternative paths, where the event flow direction can be switched at runtime:

A Router Module.

Depending on the router state (controlled by the upper input) the events arriving at the lower
input are directed either to the upper output or to the lower output. The upper input (the con-
trol input of the router) is of BoolCtl type and can be in the true or false state.

e [f the control input is in the true state then the events are routed to the upper output.
e |f the control input is in the false state then the evens are routed to the lower output.

The BoolCtl connection does not transmit any events. It only transmits the state but no trigger-
ing information. Therefore it is not a signal in the same sense as the scalar type class.
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The BoolCtl sources are provided by Compare, Compare Sign or ES Ctl Modules in the
Built-In Module > Flow menu.
The comparison criterion of the Compare and Compare Sign Modules can be adjusted in

their Properties.

The Compare Sign Module is useful for detecting zero (and other thresholds) crossings.

There are no Boolean operation built-in Modules to combine different BoolCtl connec-
tions together. Use the Macros from Library > Logic (at the cost of a somewhat higher
CPU load) if you need standard Boolean logical operations.

A signal split by a Router Module can be merged back by the Built-In Module > Flow > Merge:

Merging the two paths back. The Macro Structure implements the absolute value functionality.

The Merge Module simply lets all incoming events go through to the output. If the events arrive
simultaneously at both inputs, the lower input has priority.

Instead of merging the two paths of the split signal, another common pattern is to merge back
with the original signal:
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Merging back to the original signal. The Macro Structure implements the absolute value functionality.

Since the lower input of the Merge Module has higher priority, in case the signal goes through
the inversion path, the inverted signal at the lower input of the Merge Module has priority over
the original (unrouted) non-inverted signal.

The Merge Module does not need to be used exclusively in combination with routers. One can
merge arbitrary events.

In the current implementation of the REAKTOR Core technology this kind of 'chaotic'

® merging (as compared to merging the split paths back together or to their original
source) might overload the compiler. Therefore 'chaotic merging' needs to be used with
some care. In cases of large amounts of chaotic merging, the compilation time may grow
excessively. Event reclocking by using latches and Modulation Macros often helps (see
section 15.6.3, Routing and Merging).

The math processing Module such as the built-in adder, multiplier etc. technically per-
form event merging. The difference to the Merge Module is solely in how the output val-
ue is computed. Therefore the math processing Structures are subject to the same
'chaotic merging' considerations.

The Merge can be made to have more than 2 inputs by configuring the number of inputs in its
Properties. The priority rule for simultaneous events is the same: the priority is highest at the low-
est input. Intuitively this can be imagined as the events being locally ordered from the top input
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to the bottom one, so that the lowest event is the one which arrives latest of all and thus overrides
the value prepared for the output.

4.9 SR and CR Buses

A number of signal processing Modules need to be clocked by some regular trigger sources.
The typical examples are oscillators, filters, envelopes and LFOs. REAKTOR Core provides de-
fault clock sources for such Modules. There are two sources provided in the form of Bundle
Scoped Buses with two different names:

e SR (for Sampling Rate): The bus with this name is the source of the audio clock.
e CR (for Control Rate): The bus with this name is the source of the control clock.

The SR bus is intended to be used for audio processing Modules like oscillators and filters,
while the CR bus is intended to be used for control processing Modules like envelopes and
LFOs. However, this SR/CR distinction is purely conventional and is made with the sole pur-
pose of being able to provide different audio and control clocks 'by default'. There is always a
possibility of overriding the default connection and/or providing even more clocks by defining
further buses with different names and the same Structure.

The default CR source in REAKTOR Core is identical to SR signal-wise, runs at the au-
dio rate and has nothing to do with the Control Rate source in the REAKTOR Primary. If
desired, the Primary Control Rate can be 'imported' into the CR bus by using the Library
> Clk Bundle > Control > CR From Prim Macro.

Both SR and CR bus Bundles have identical internal Structure and theoretically can be used in
place of each other. Practically this is usually not recommended. Particularly, the conversion
between different clock rates needs to be different for audio and control signals.
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The default built-in SR and CR buses are provided 'one level higher' than the top Struc-
ture of the Core Cell, thereby allowing to redefine them already within this top-level
Structure without causing a definition conflict. If such redefinition is done, the 'previ-
ous' (default) bus has to be picked up using the parent-mode scoped accessors, as usu-
ally. See 14.9.4, CR rate change and 14.9.5, SR Rate Change for the details of redefin-
ing SR/CR.

4.9.1 Connections to the Clock Buses

A Core Macro Library Module that needs an SR or a CR connection has by convention a Bundle
input, labelled SR or CR respectively:

The SR input of an oscillator.

The SR/CR input convention is not used for the low-level library Macros. Particularly, the zA-1 ffd
and z"-1 fbk Macros connect themselves to the SR bus, even though they do not have an SR in-
put.

If the SR or CR input is not connected, it automatically picks up the SR or CR bus. In the case
of the above oscillator, in the default unconnected state of the SR input, this input will be au-
tomatically picking up the SR bus. Should this default connection be undesired, some other
clock Bundle source needs to be manually connected to this input. This automatic connection
convention is employed for effectively all signal generating and processing Modules in the Core
Macro Library.

49.2 Clock Gating

Sometimes it is desired to turn off audio or control processing within a given part of the Struc-
ture. This can be achieved by gating the clock.

In the following Structure the audio clock is gated for a 2-pole SVF filter:
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SR clock gating.

The XR Gate Macro (Library > Clk Bundle > XR Gate) on the left interrupts the SR clock as
long as the gate signal G is zero. As soon as G is turned to 1 the clock begins to run.

Upon turning from O to 1, the XR Gate sends a reset signal (see section 14.9.6, Internal Struc-
ture of Clock Buses) along the clock Bundle, causing the connected Modules to reinitialize their
internal states if necessary. Should the reset signal be undesired in this case, use an XR Freeze
Macro instead.

The "XR" stands for either "SR" or "CR". That is, the XR Macros are equally usable for both SR
and CR Bundles. Some other clock Bundle Macros are usable only for SR or only for CR Bun-
dles. Those Macros are located under Library > Clk Bundle > Audio and Library > Clk Bundle >
Control respectively.

The XR Gate Macro only gates the clock, but does not cause the outputs of the connect-
ed audio- and control-processing Macros, such as the LP output of the filter in the
above picture, to be zeroed (this is done for the CPU efficiency reasons, associated with
the event merging issues discussed in section 15.6.3, Routing and Merging). It is the
builder's responsibility to avoid picking up the 'frozen' output values by some other run-
ning parts of the Structure downstream.

The automatic default connection of SR/CR input is implemented only for the signal

® generating and processing Modules like oscillators, filters, envelopes, LFOs, etc. The
Modules dedicated to the handling of SR/CR bus themselves (such as clock gates, divid-
ers, etc. (located in Library > Clk Bundle > Control) always need to be connected explic-
itly.
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4.9.3 SR and CR redefinition

If a whole area of the Structure is being controlled by a gated clock, then instead of wiring up
the output of the XR Gate Macro to each of the clocked Modules, it is convenient to put all
such gated Modules into one Macro Structure and locally redefine the clock bus within this
Structure:

Redefining the SR bus.

Notice the parent-mode accessor usage at the input of the XR Gate, which ensures that
the higher-level SR bus, rather than the one defined on this level, will be picked up.

Another version of the same approach is discussed in section 15.2, Generation of Audio and
Other Regularly Clocked Events.

Some kind of an 'in-between' approach is to define a Scoped Bus (or a QuickBus) with a different
name and explicitly connect to this bus. Notice that there is no need for the parent-mode acces-
sor at the XR Gate's input in this case.

i SR Gated ] 1

494 CRrate change

In certain advanced Structure building scenarios one control rate is insufficient. Or the default
control rate, which is equal to the audio rate, may be considered too high for the builder's pur-
poses. In this case the CR rate division may be employed to generate lower control rates. E.g.
the following Structure fragment employs the CR Div Macro (Library > Clk Bundle > Control >
CR Div) to locally redefine the CR bus to a 4 times lower rate:
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Ly .. CR=: R CR/MN &= LR N

Redefining the CR bus to a 4 times lower rate.

Of course, the other discussed possibilities to connect to the new CR (including explicit wiring,
QuickBuses and differently named Scoped Buses) can be used as well.

Smoothing

Converting a signal from a higher control rate to a lower control rate can be done by the XR Re-
clock Macro (Library > Clk Bundle > XR Reclock):

Sine LFO

Reclocking control signal to a lower rate.

In principle the XR Reclock Macro can be also used for control signal upclocking or audio up- or
downclocking. Usually, however, this will create undesired artifacts that can be avoided by using

other means instead.

Conversion from a lower control rate to a higher control rate is achieved by smoothing. A linear
cross-control rate smoother is provided by the CR Lin XSmoother Macro (Library > Clk Bundle
> Control > CR Lin XSmoother):

Smoothing from a lower control rate to a higher one.
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The CR Lin XSmoother Macro is designed to be used by hard-locked control rates, the ratio of
which is an integer number. E.g. in the above picture the CR/4 control rate is obtained by ap-
plying the CR Div Macro to the CR control rate. If this condition is not met, the smoother will not
work correctly.

The "(0)" input of this and other smoothers is intended to provide an initial value for the smooth-
er. If the input signal of a smoother is clocked, then according to the clocking conventions (see
sections 14.9.6, Internal Structure of Clock Buses, 15.2, Generation of Audio and Other Regularly
Clocked Events and 15.3, Processing of Audio and Other Regularly Clocked Events) the input sig-
nal cannot arrive during the initialization or a Structure reset. Thus, it will be not possible to use
the input signal to specify the initial state of the smoother. One way around it is to merge in a
dedicated initial value signal using a Merge Module in front of the smoother's input. However this
is a kind of hidden violation of the mentioned clocking convention. Instead, one should connect
the initialization signal to the "(0)" input of the smoother. If the input signal is not following the
clocking convention (like e.g. a signal which comes from a knob) and provides a reasonable initial
value setting for the smoother, then the "(0)" input can be left disconnected. The smoother will

use the input signal as the initial value source in this case.

Irregular Permanent Smoothing

Smoothing can also be applied to convert an irregularly clocked signal (or a signal which
comes completely sporadically, such as a stream of values from a panel knob) to remove the
steps in the signal. Such smoothing will produce a stream of values clocked at some control
rate. Depending on the specifics of the particular smoother, however, the signal events might
not be sent all the time, but only until the destination value is reached by the smoother. E.g.
in the following Structure the "Cutoff" knob's value at the Macro's input is being smoothed by a
Lin Smoother [P] Macro (Library > Control > Smoother > Lin Smoother [P]):

* Cutoff #——=

Permanent smoothing of an irregular control event stream.
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The Library > Control > Smoother > Lin Smoother [P] Macro is not considered a CR-han-
dling Macro, since it does not modify the CR Bundle or explicitly convert from one rate
to another. For that reason it is located under Library > Control rather than Library >
Clk Bundle > Control. For the same reason it automatically connects to the CR scope
bus.

The Lin Smoother P Macro generates a permanent stream of output events at a rate defined by
CR bus ("P" for Permanent). Whenever there is a new event coming from the "Cutoff" input port
Module, the smoother generates a ramp of duration specified by the Time input (in seconds)
from the old value to the new value.

If the Time input is not connected, there is some preconfigured default. The "(0)" input has the
same function as for CR Lin XSmoother.

Irregular Automatic Smoothing

Imagine the control signal processing Structure downstream from a smoother. The processing
in this Structure may follow different conventions, such as the following:

e The control signal processing Structure is clocked by the CR clock.

e The control signal processing Structure is unclocked; the processing is triggered by the in-
coming control signal events.

In the latter case it might be undesirable that the smoother is generating the output events all
the time, thereby causing the control signal processing to run all the time as well. Rather, the
smoother should only generate the output events until the target value is reached and then
stop. This behavior is implemented by the Lin Smoother [A] Macro (Library > Control >
Smoother > Lin Smoother [A], "A" for Automatic), which differs from Lin Smoother [P] only in
exactly this aspect:

Lin Srnaather [A]

Automatic smoothing of an irregular control event stream.
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Irregular Batch Smoothing

The automatic stop option however still requires a runtime check on every control clock in or-
der to determine whether the smoother is active or not. Such runtime check also consumes
CPU time. Therefore it is a good idea, if one has a group of several of such smoothers, to group
them together, performing one single runtime check for the entire group.

This approach is implemented by the Lin Smoothers [A] Macro (Library > Control > Smoother
> Lin Smoothers [A]):

# Time

in Smaathers [A]

Batch smoothing of two irregular control event streams.

Internally the Lin Smoothers [A] Macro contains a 'master' smoother (containing the master
check) and a chain of 'slave' smoothers:

Tirne — Tirme
CR=:CR
Lin Srnaaother [F] Lin Sraather [S]

Lin Sraather [S]

Tirne ®+ Time

ER[: (R #—hio Event

Lin Sraather [S]

The internal Structure of Lin Smoothers [A] Macro.
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The slave smoothers are the ones doing the smoothing itself and can be added or removed by
the user of the Macro according to the number of signals which need to be smoothed. The "No
Event" default for the Macro inputs prevents the unused inputs from initiating a smoothing
ramp upon reset. The maximum number of slave smoothers supported by the current imple-
mentation is 32, which should be sufficient for most purposes.

Sticking too many smoothers together in this fashion will produce some small overhead, due to
the fact that the per-smoother runtime checks will be performed for all smoothers as long as at
least one of the smoothers is active.

49.5 SR Rate Change

A conversion between audio signals of different rates is done differently from control signals.
While control signals can be naively downsampled and smoothed upon upsampling, the audio
signal resampling requires special kinds filtering techniques.

In the current version of REAKTOR Core the clock rates can be only lowered, not raised.
Thus, oversampling is currently not possible. The rate conversion Macros are of course
available in both directions: downsampling (used upon entering the downsampled area)
and upsampling (used upon leaving the downsampled area).

Thus, a set of library Macros provided for the SR rate change is different from those for CR:

A locally downsampled SVF (State-Variable Filter)

The SRdiv2 Master Macro (Library > Clk Bundle > Audio > SRdiv2 Master) on the very left is
the downsampling master, which is driving the downsampling converter SRdiv2 In on the left
and the upsampling converter SRdiv2 Out on the right. Thus the filter in between is running at
halved sampling rate. You can drive multiple SRdiv2 In and SRdiv2 Out converters with the
same master.
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Often it might be reasonable to put the entire downsampled area inside a dedicated Macro. In
this case it is useful to locally redefine the SR bus to the downclocked one using the same trick
as it was explained for the CR bus in 14.9.4, CR rate change. Note that you still need to explicitly
resample all incoming and outgoing audio signals of the downsampled area by using SRdiv2 In
and SRdiv2 Out Macros.

4.9.6 Internal Structure of Clock Buses

A clock bus is a Bundle containing three different fibers named "C", "R" and "Reset". For the
convenience of the builders the Macro library contains preconfigured Bundle Pack and Unpack
Modules for the SR and CR buses under Library > Clk Bundle > Audio > XR Pack and XR Un-
pack:

Preconfigured Pack and Unpack Modules for the SR/CR Bundles from the library

The details of each of the fibers are described below. The examples of the low-level usage of
the clock buses can be found in sections 15.2, Generation of Audio and Other Regularly
Clocked Events and 15.3, Processing of Audio and Other Regularly Clocked Events.

“C" Fiber

This is the clock fiber which sends regular events at the clock rate. The audio processing Mac-
ros are supposed to send the output audio events only in response to the clock events. Same
holds for regularly clocked control events.

The convention requires that no event is sent on the C fiber during the initialization.
This particularly means that the audio signal outputs and clocked control outputs of
Core Macros are not sending during the initialization.

® The value of the C fiber is unspecified and should not be relied upon.
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"R" Fiber
This fiber transmits the clock rate in Hz.

The convention requires that the R event is sent during the initialization. Afterwards it is
sent as needed.

The reason for this convention is to simplify the event processing in the use cases of the R fiber.
Since the R fiber is guaranteed to send the initialization event, it can be safely used as a divisor
in the computation of oscillator increment steps, normalized filter cutoffs, and so on.

The events on the R fiber may cause additional computation overhead in the consumer Struc-
tures, as they are reconfiguring themselves to a new rate, and should not be sent indiscriminately,
but rather only when the rate changes or is likely to change (filtering out the duplicate values sent
on this fiber is probably a little excessive, while sending events here at a regular rate is a highly

questionable practice).

"Reset" Fiber

This fiber transmits a zero-value reset event. The consumers of the SR Bundle are supposed to
reset their state (if necessary) in response to this event. E.g. a filter should reset its state,
while a free-running oscillator does not have to do anything in response to this event.

The convention requires that the Reset event is sent during the initialization. Afterwards
it is sent as needed.

The convention requires that the Reset event always has a zero value.

The convention specifies the Reset event semantics as 'starting again without the past'.
E.g. a Reset event can be sent upon resuming a paused clock to cause the Structures
(such as e.g. filters) to reinitialize their states.

REAKTOR 6 - - 101



Processing Model of Core

Feedback Connections

The reason for sending the Reset event during the initialization is to simplify the initialization of
the Structures, which otherwise might need to take special measures to make sure that the same
initialization steps are performed during the initialization and during further resets. The reason for
the zero value of the Reset event is that a typical response to the Reset event is to zero the states,
therefore the Reset event can be directly stored to the state memory of the respective Structures.

410 Feedback Connections

4.10.1 Automatic Resolution

REAKTOR Core allows the usage of the feedback loops in the Structures, provided each feed-
back loop contains at least one scalar (float or int) wire. The loop will be handled by automati-
cally placing an implicit one-sample audio delay somewhere within the loop,

'‘Audio’ means that this implicitly inserted delay will be clocked by the SR.C clock obtained from
the current scope. The delay also responds to SR.Reset by zeroing its memory.

It is not guaranteed that REAKTOR Core will use at maximum one implicit one-sample
delay per detected feedback loop. In some cases it is possible that more delays will be
inserted. For exact control over the feedback loop resolution, one needs to use z*-1 fbk
Macros explicitly (see section 14.10.2, Manual Resolution).

REAKTOR Core highlights the feedback loop visually by turning the connection color to orange:

A highlighted feedback loop.

If the loop does not contain any scalar wires then it is an error, which is highlighted in red:
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A purely non-scalar feedback loop.

Equally, if an SR bus definition is contained in or depends on a feedback loop, such loop is an
error, even if it does contain scalar wires:

SR bus dependent on the feedback loop

The reason for this is that the implicit audio delay used for the feedback loop resolution needs
access to SR.C and SR.Reset, which creates another feedback loop after the resolution of the first
one. See section 14.10.4, Resolution Mechanism for the details of the delay's Structure.

4.10.2 Manual Resolution

If exact control over the feedback loop resolution is needed, a z/-1 fbk Macro (Library > Mem-
ory > z~-1 fbk) has to be used. In this case the compiler does not highlight the loop anymore:

The use of the zA-1 fbk Macro to explicitly resolve the feedback loop.

REAKTOR 6 - - 103



Processing Model of Core

Feedback Connections

The zA-1 fbk Macro implements the same one-sample delay Structure which is used by the au-
tomatic resolution. Differently from the automatic resolution, by using this Macro the builder
can exactly specify the position of the one-sample delay.

The z/-1 ffd Macro (Library > Memory > z/A-1 ffd) is not intended and cannot be used
for the feedback resolution. Its intention is implementation of feedforward 1-sample au-
dio delays.

Neither of the above two Macros is supposed to be used for other purposes than audio
rate 1-sample delays. For delaying other kinds of events by one tick use the Latch[-1]
and Event[-1] Macros.

4.10.3 Nonsolid Macros and Feedback Loops

The Solid property setting of the Macro is affecting how the Macro is treated in respect to the
feedback loops.

e Solid Macros 'cannot be entered' by feedback loops. This means that, regardless of the in-
ternal contents of the Macro, a feedback loop around this Macro is always a feedback
loop. A Macro is treated as if it didn't have any internal Structure and was just a single
solid block:

> Solid Macro

Solid Macro
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e The boundaries of nonsolid Macros are transparent to the feedback loops. If there is no
unidirectional connection from an input to an output internally inside a nonsolid Macro,
there will be no loop:
* Core Cell

Monzolid Macro

In particular, the zA-1 fbk Macro needs to be nonsolid in order to be able to resolve the
feedback.

4.10.4 Resolution Mechanism

Internally the z/-1 fbk Macro loops like follows:

The internal Structure of the zA-1 fbk Macro.
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The Latch and the Write Modules on the left are responsible for handling the SR.Reset, where
the "(0)" input can be used to specify the value to reset to. The DN Cancel Module takes care
of denormals (see section 15.5, Denormals and Other Bad Numbers). The essential part of the
Structure is based on the remaining two Modules:

The essential part of the zA-1 fbk Macro's internal Structure.

Since the z7-1 fbk Macro is nonsolid, the following two Structures are equivalent:

An equivalent expansion of the zA-1 fbk Macro (the nonessential parts of the zA-1 fbk's internal Structure are omitted).

So, formally from the compiler's perspective, there is no feedback loop at all (and thus no
highlighting either).
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9 Building Practices and Conventions

9.1  Expression Computation

The simultaneity of event processing in REAKTOR Core makes the computation of single-argu-
ment mathematical expressions quite straightforward. One thing to keep in mind is that, as a
general rule, it is better to connect the constants to the Modulation Macros:

Computation of the x/(1+Ixl) formula by a Core Macro.

The reason for using Modulation Macros is clearly illustrated by the following Structure:

A questionable implementation of the 1/x/2 formula.
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The problem is that if there is no input event during the initialization, the constant at the up-
per input of the divider will trigger the computation. Since no event has ever arrived at the low-
er input of the divider, though, the value at this input is zero. Therefore a division by zero will
be performed, causing an INF value to be sent further downstream (see section 15.5, Denor-
mals and Other Bad Numbers for further details on why this should rather be avoided) Howev-
er, if it is certain that the initialization event will arrive at the lower input of the divider, the
above Structure can be used.

The computation of multiple argument expressions is fairly straightforward as well, except that
one needs to watch for potential initialization issues.

Computing xA2+yA2.

9.2  Generation of Audio and Other Regularly Clocked Events

The audio-generating Structures typically should be internally clocked by the SR.C:
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A naive (non-antialiased) sawtooth generator Macro.

The 1 wrap Macro used in the above Structure is found under Library > Math.

There is a general convention for the audio generating and processing Modules that they
should perform their 'sample tick' computations and send output events in and only in
response to the SR.C. The usage of the modulation adder in the above sawtooth oscilla-
tor ensures that no additional events (from the F input) will cause iteration triggering
and/or sending of an output event.

The same convention applies for CR-clocked processing and is a good candidate for the
application to other regularly clocked Structures.

Rather than binding the Macro to the usage of the SR bus available in the context, it might be
useful to allow an SR Bundle to be connected explicitly to a dedicated input of the Macro. A
useful pattern for this is illustrated in the following picture:
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A Macro with a dedicated SR input port.

The Macro employs the Scoped Bus overriding technique to redefine the SR bus locally. If
there is no connection at the SR input of the Macro, the redefined bus will simply be connect-
ed to the SR bus from the Macro's parent context, so the Macro will work exactly in the same
way as if the SR bus was not redefined at all. However, if there is an explicit connection at the
SR input of the Macro, the Macro will use the explicitly connected SR Bundle instead.

An audio generating Structure might also need to perform some specific actions in response to
the SR.Reset. For a free-running oscillator, however, the Reset event can be completely ignored.

rectly inside a non-solid Macro, since the bus redefinition will also affect the outside
Structure. In this case the internal wiring of the SR.C, SR.R and SR.Reset needs to be
done using normal wires and/or QuickBuses.

® The above trick involving the local redefinition of the SR Scoped Bus will not work cor-

9.3  Processing of Audio and Other Regularly Clocked Events

The processing of audio and other regularly clocked events is similar to the generation. Besides
the usage of Modulation Macros in places where the control signals are mixed with audio
events, it is a good idea to reclock the audio input with SR.C just in case that a non-audio sig-
nal is connected to the input from the outside (one particularly common case of this is leaving
an input disconnected, which implies a zero constant):
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A naive 1-pole lowpass filter.

Discrete-time difference LTI systems can be directly implemented in REAKTOR Core by simply
wiring up the system's block diagram using the z/-1 fbk and z/-1 ffd Macros for z-/ blocks, mod-
ulation multipliers for gains, and adders for summation points. The above picture provides an ex-
ample.

In the above Structure the Latch and the zA-1 fbk Macros serve as SR.C-clocked signal sour-
ces, which are then combined in various ways. The only other signal which is coming in (the
normalized cutoff control signal derived from the input "F") is connected via a Modulation Mac-
ro. This ensures that no other clocks or trigger sources can accidentally generate an output
event.

The same convention as for the audio generators is applied here: the output signal
events must be produced in and only in response to SR.C. The same convention applies
to CR.C and potentially to other regular clocks.

The SR.Reset fiber is automatically handled by the internal Structure of the z/-1 fbk Macro, so
that the filter's state is zeroed in response.

In the above filter Structure the processing of the cutoff control input "F" is not done by the
Modulation Macros. If the F signal is clocked by CR.C, the filter Structure might seem to vio-
late the above guidelines of processing the clock signals, however in fact this does not.

The clocking guidelines apply to entire Library or framework Macros, not to some parts
of their internal Structure.
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Imagine a modulation multiplier had been used to combine F with the 6.28319/SR.R
value. Furthermore, imagine there was change of the sampling rate without a change of
the F input's value at the same time. In this case, the multiplier output would not have
been updated, which would have clearly been a bug.

As to whether one should have used a modulation divider to compute 6.28319/SR.R, this does
not matter since SR.R should be guaranteed to arrive during the initialization.

Had this guarantee not been in place, the divider could have produced an INF value at
the initialization, which would most likely result in @ NaN value stuck in the filter feed-
back loop (see section 15.5, Denormals and Other Bad Numbers).

9.4  Rounding

There is only one type of rounding available in Core by default: rounding to the nearest integer.
The other rounding modes (rounding down, rounding up and rounding towards zero) are not
provided. There are a number of technical reasons behind this, related to the precision and ef-
ficiency of the generated code.

While in principle the other rounding modes could be implemented as Core Macros, often the
same Structures can be implemented just using the round-to-nearest mode, thereby not losing
the efficiency. For example, an interpolated read from a buffer in a classical implementation
rounds the non-integer position x down to an integer n and then performs a linear interpolation
between the values at n and n+1, where the interpolation weights are 1-(x-n) and x-n. Howev-
er, instead one could round (x-0.5) to the nearest integer. Since for values with a fractional
part of exactly 0.5 the round-to-nearest direction is not specified, sometimes, for an exact inte-
ger x, the value x-0.5 will be rounded to n=x-1 rather than n=x. However, for the interpolation
it does not matter, since the interpolation weights in this case will be O and 1 instead of 1 and
0, producing the same result.

One might need to ensure that the buffer has at least one 'extra sample' on each side of the re-
gion, which is read by the interpolator (this is usually a good idea regardless of the rounding mode
used, since there can be precision losses in the computations). These extra samples can be set to
an arbitrary value (within the same value range as the typical values in the buffer), since the in-

terpolation weights for the extra samples will be very close to zero.
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In situations where a division result needs to be rounded down, usually an integer divi-
sion is meant semantically and this is what normally should be used as well. Note that
the integer division rounding mode is 'towards zero'.

The reason that the integer division rounding mode is 'towards zero' rather than 'down' is that this
is the mode supported by modern processors. Implementing a rounding down mode instead would
produce a higher CPU load. However, there is no difference between the two modes for non-nega-
tive integers.

The rounding down mode of the integer division seems to be generally more useful in

® signal processing applications. Therefore, if future processors support this mode natively
in an efficient way, it is possible that Core integer division will also employ this mode.
While in this case Core will probably implement a legacy mode switch, it is recommend-
ed to stay away from relying on specific rounding direction when there are negative inte-
gers involved in the division.

5.9  Denormals and Other Bad Numbers

The IEEE floating point representation, which is typically used on modern computers, has sev-
eral different classes of special values, which are often processed at a much higher CPU time
cost. A single value of this sort occasionally popping up in the real-time data should not cause
noticeable harm. The problem is that quite often these values tend to stick in the state memo-
ry for quite long periods of time, if not forever (that is until the memory reinitialization).

Denormals

In 32 bit floating point, denormals are the values approximately in the absolute magnitude
range between 1037 and 10“°. The values below this range cannot be represented in this for-
mat and are replaced by zeros.

For 64bit floating point the denormal range is approximately between 10397 and 10-%# in magni-
tude.
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One most critical situation where denormals can appear is exponentially decaying feedback
loops (such as feedback loops in the filters, feedback delays, reverbs, etc.). Denormals appear
when the signal level decays to 109 and stays there for a while until it drops below 104
which, depending on the decay speed, can take quite a while.

Denormals are also generated in some other situations as well.

In order to mitigate the above problem, REAKTOR Core offers a DN Cancel Module whose pur-
pose is to kill the denormals. In the current implementation it is done by adding a small value
to the incoming signal.

e |f the incoming value is within a typical signal value range (approximately above 10-19),
then the addition of the denormal compensation value will not change the incoming value
at all, due to the limited precision of the floating point.

e [f the incoming value is lower (including the denormal range), it will be possibly modified,
but, due to the limited precision of the floating point, will also never produce a denormal
result.

Because the denormals are so likely to appear in feedback loops, the library zA-1 fbk
Macro includes a DN Cancel internally.

An additional side effect of the DN Cancel embedded into z/-1 fbk is that the z/-1 fbk acts as an
internal excitation source for the self-oscillating filters, like circuit noise in an analog filter. In ab-
sence of the DN Cancel such filters would not produce signals on their own without an external
excitation signal.

Denormals are rarely a problem in feedback loops that are not exponentially decaying.
For example, typical oscillator Structures include some kind of feedback loop, which is
implicitly formed between the Read and the Write Modules in the oscillator's phase in-
crement Structure. However, since this Structure is not exponentially decaying, but rath-
er produces a repeating ramp signal, the denormals are not a problem here.

Modern CPUs can often be configured in such way that denormals do not cause extra CPU load
(typically in this mode the CPUs simply flush them to zero). So, denormals have become less
of a problem in recent years. Nevertheless, it is probably reasonable to take measures against
them anyway because:
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e we do not know how the situation with handling of denormals by CPUs will develop in the
future.

e at some point REAKTOR Core might support a different processor architecture, which
does have problems with denormals.

e DN Cancel can serve as an internal excitation source for self-oscillating filters.

Infinities

Dividing a non-zero value by zero will produce an infinity (INF). INFs have a tendency to 'stick’
in the processing path for a long time, and they also have an increased risk of being converted
into a NaN.

NaNs

A NaN (not-a-number) is typically produced when some mathematical operation cannot deliver
a valid result. If combined with another value a NaN would normally produce another NaN,
which results in the tendency of NaNs to 'stick' in the processing paths, similarly to the INFs.

Initialization problems in filter Structures are one typical source of stuck NaNs, quite likely with

some infinities generated along the way.

There is no embedded way in REAKTOR Core to kill NaNs (or infinities). It is the respon-
sibility of the builder to prevent their appearance.

9.6  Optimization hints

5.6.1  Core Cell Handlers

When compiling a Core Cell, the compiler generates a number of different functions, or 'han-
dlers', which correspond to the Primary level internal Module API:

¢ Initialization handler: This handler is invoked once at the very beginning of processing and
also upon a 'hard reset' of a Core Cell.
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e Event handlers: Each of the event-mode inputs of the Core Cell has a corresponding event
handler. The event handler unconditionally sends the event from the respective input into
the Core Cell's Structure.

¢ Audio handler: This handler is invoked on each audio tick. The audio clock event is uncon-
ditionally sent from all respective sources inside the Core Cell.

Each of the handlers is compiled and optimized separately.

e The compiler identifies the areas of the Structure which do not receive any events within
the particular handler and does not generate the respective code.

e The compiler identifies the events which are being sent unconditionally within the partic-
ular handler (e.g. an audio clock within the audio handler) and does not generate any run-
time checks for these events.

e For events that are sent conditionally the compiler generates the runtime checks, which
determine whether a particular event is being sent or not.

59.6.2 Latches and Modulation Macros

Often in Structure building there is a question of whether a Latch should be used at a particu-
lar position. In answering this question the logical function of the Latch and the associated
CPU consumption can be considered. As it was already mentioned, the compiler is treating
latches (and the 'read followed by a write' pattern in general) in a special optimized way. Thus,
the relationship between the usage of a Latch at a particular place and the associated change
in the CPU load is not straightforward.

e Generally, if it is not necessary to store the value into the memory (because the value is
immediately read afterwards anyway), the compiler will not do so. In such situations a
Latch by itself will not add to the CPU load.

e On the other hand, not placing a Latch on some signal path may result in a more compli-
cated triggering logic of the downstream Structure and thus in a higher CPU load pro-
duced not by the Latch itself, but by this downstream Structure.

Thus, there is no general rule whether using a Latch will increase the CPU load or decrease it.
It is best to simply use latches wherever logically appropriate.

As Modulation Macros are simply shortcuts for the mathematical operations combined with Latch-
es, the same applies to the Modulation Macros.
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The already familiar naive 1-pole lowpass filter Structure illustrates:

A naive 1-pole lowpass filter.

Depending on the clocking of the signal at the upper input there are the following two typical
situations:

e |f the input signal is already clocked at the audio rate, the latch at the input is fully trans-
parent and is not going to produce any compiled code.

e |f the input signal is not an audio rate signal, the latch will store its value upon the arrival
of the input event, the value being read back upon every audio clock.

The compiler will also handle a number of more complicated situations in regards to the input
signal clocking relative to the audio clock.

As for the cutoff control signal at the F input, the same situations are handled in the following
ways:

e |f the cutoff is an audio rate signal, the output of the first multiplier will be directly used
by the internal multiplier of the Modulation Macro during the audio clock processing.

e |f the cutoff is not an audio rate signal, the internal latch of the modulation multiplier will
store the value, and read it back upon the following audio clock tick.

On the other hand, the following Structure illustrates the case where a usual multiplier had
been used instead of the modulation multiplier:
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A naive 1-pole lowpass filter with a buggy use of a non-modulation multiplier.

In the above Structure the following problems would have arisen if a non-audio event arrives at
the F input.

e The non-audio event at the F input will trigger the computation and the sending of the
new output value at an inappropriate (non-audio-clock) time moment.

e The subtraction, which is normally done on the audio clock, will not be triggered during
this non-audio computation, since neither the zA-1 fbk Macro nor the input latch send an
event. However, the second multiplier and the adder will be triggered and the computa-
tion result will be stored in the zA-1 fbk Macro, overriding the previously stored state.
Thus, the filter will have performed a 'halfway update cycle', basically destroying its own
state.

e The triggering conditions of the second multiplier and of the adder will be a mixture of
the audio clock and the cutoff event. If the audio clock is not the default clock (which is
unconditionally sent during the audio handler), but something else (e.g. downsampled or
gated audio clock), the mixture will require the compilation of a runtime check before the
second multiplier, causing a higher CPU load.

Thus a removal of the Latch from the Modulation Macro in the above 1-pole filter Structure
could have caused both incorrect functioning and a higher CPU load.

9.6.3  Routing and Merging

The compiler recognizes the following routing/merging patterns:
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e Two signal branches from a router are merged back afterwards. Such merging is treated
like an endpoint of the splitting:

e A branch is being merged back to the pre-router signal. This is also a kind of endpoint of
the splitting:
=

Triggering-wise, most of the arithmetic Modules are equivalent to the Merge Modules and are also
subject to a similar recognition by the compiler.

The above patterns imply that no additional triggering events have been merged into the
branch (e.g. the branch is consistently employing Modulation Macros to mix in further signals).
The following Structure illustrates this:
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An incorrect merging of two branches.

The Structure is supposed to add the lower input to the negative values of the upper input,
while the non-negative values should be left untouched. The Structure however neither works
as expected nor the mergepoint really merges the two signal branches back (triggering-wise).

e |f the events arrive simultaneously at both inputs of the Macro, the event at the lower in-
put will trigger the adder. The adder will use the latest negative value of the upper input
(which is available at the lower output of the router) as the other addend. The result of
the addition will be sent through the Merge Module to the Macro's output regardless of
the sign of the value at the upper input.

e |f an event arrives at the lower input only, the situation is similar. The adder will use the
latest negative value as the other addend and send it through the Merge to the output.

e |f an event arrives at the upper input only, the Structure works as expected. The value is
forwarded to the output untouched.

Regarding the triggering conditions of the output, rather than being identical to those of the
input, they are a complicated mixture of the triggering conditions of the first and the second
inputs and the sign of the value at the upper input. Thus, no splitting endpoint occurs trigger-
ing-wise.

Replacing the adder with a modulation adder will fix all of the above problems.

The above example and other kinds of merging do not correspond to the splitting end-
points, because the post-mergepoint triggering information is not identical to the pre-
router triggering information. Therefore there is additional CPU overhead at the merging
point due to the necessity of checking the runtime triggering condition for the subse-
quent signal path.
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The compiler does not recognize identical or related conditions originating from different
BoolCtl sources. A merging of such signals will produce additional runtime overhead as any
merging of unrelated signals:

A merging of two formally unrelated signals.

Neither does the compiler identify 'always true' or 'always false' conditions from numerical
comparisons:

The compiler will not recognize that the event is always routed to the upper output.

Disconnected BoolCtl ports are recognized as providing constant control conditions.
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ES Ctl

The BoolCtl signal produced by an ES Ct/ Module is in the true state when there is an incom-
ing event at the ES Ct/ Module's input at the very same,moment, and in the false state other-
wise. Thus, the ES Ctl Module allows you to check whether some event and the event at the
Router's input are arriving simultaneously.

The routing controlled by ES Ct/ Modules is subject to further special optimization, where a
router can be found to be in an 'always true' or an 'always false' state. This is particularly de-
tected in the following cases:

e The signal at the ES Ct/ Module is the 'triggering parent' of the input signal of the Router.

e The event at the ES Ctl Module is mutually exclusive with the event at the Router's input,
because it lies on a different branch of some other Router or because the event simply never
arrives within a particular handler.

This is illustrated by the following picture:

ES Ctl controlled by a 'parent' trigger.

Within the audio handler both the SR.C and the audio-mode Core Cell input (in the inputs area
on the left) are triggered unconditionally. Therefore the SR.C and the audio-mode input are
considered as the same (unconditional) clock source. So, within the audio handler, the audio
rate clock from the Core Cell's input is being sent through the first router. Thus, the input of
the second Router is some subset of the audio rate events and there is always an SR.C coming
to the ES Ctl simultaneously with the second Router's input events. Due to the 'parent-child'
relationship between these two events (one being obtained by routing the other), the compiler
is aware of this relationship and will deduce that the second Router can be always considered
to be in the true state.

REAKTOR 6 - - 122



Building Practices and Conventions

Optimization hints

Within the initialization handler the compiler will detect that the SR.C will never come at all
and will deduce that the second Router is always in the false state.

Actually, compared to the event and especially the audio handlers, it is not crucial to ensure that
the initialization handler is optimized, because the initialization handler is executed rarely. The
REAKTOR Core compiler also performs less optimization for the initialization handler, often for
the sake of being able to perform better optimization for the event and audio handlers.

Reclocking

At each mergepoint the compiler attempts to detect whether a splitting endpoint occurs. In
cases where 'chaotic routing' (when the routing branches are not merged back together, but
rather some signals with unrelated triggering sources are mixed) has been used in excessive
amounts, the analysis time can grow drastically. In the worst cases this can cause the compiler
to appear to 'hang indefinitely' (the compiler's progress bar stops completely).

NI is aware of this issue and is looking for a solution.

In a 'chaotic merging' situation practically each Module represents a new mergepoint with a
new set of triggering conditions. While the analysis of these triggering conditions consumes the
compilation time, the respective runtime check eventually generated by the compiler con-
sumes the runtime.

'Chaotic merging' by itself is not necessarily bad. The builder simply needs to be aware
of the associated CPU overhead. Such overhead can be completely acceptable e.g. in
processing of a rarely sent control events. The mentioned growth of the compilation
times is another problem requiring the builder's awareness.

To kill the problem of 'chaotic merging' at its very root the builder can do the following:

e Use Modulation Macros at all logically appropriate places. The Modulation Macros copy
the triggering information from their triggering input (as long as they have only one trig-
gering input, which is true for the majority of such Macros), thus the signal stays within
the same routing/triggering branch.
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e Use control and audio clocks to make sure that the merged signals are either identically
clocked or at least clocked with a small number of different clocks. It is even better if the
clocks are derived from some common master clock in a hierarchical fashion, because
merging a 'subclock’ to its 'parent' will simply produce the 'parent' clock again.

e Use the technique of reclocking.

Reclocking means that the builder places Latches at a number of points within a 'chaotically
merging' structure. The Latches should be clocked by events with a relatively simple triggering.
Some candidates for such clocks are the following.

e A control or an audio clock signal:

e A control or an audio clock signal, put through a router, which is controlled by a Boolean
variable, where the latter is being set upon any arriving merged event and reset upon the
event passing through the Router:

Other strategies based on the specifics of given Structures can be used.

5.6.4  Numerical Operations

When computing mathematical expressions, various issues need to be taken into account.
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Relative Cost

The relative CPU cost of various operations can vary from one processor to the other. However,
broadly speaking, the following hints can be kept in mind:

e The cheapest operations are float/int addition, float/int subtraction, float multiplication.
Negation, absolute value and integer bitwise operations are equal or slightly more expen-
sive. DN Cancel in the current implementation is using an addition internally.

e Float/int division and integer multiplication are noticeably more expensive.
e Float exp and log Modules are the most expensive.

e The cost of runtime condition checks (occurring in routing and non-split endpoint merg-
ing) can noticeably vary depending on the circumstances. At any rate they are probably
less desirable than a couple of cheap mathematical operations such as addition, so when-
ever possible, the latter might be preferred.

e The Read and Write operations are comparable in cost to the cheapest mathematical op-
erations. They might be marginally more expensive for the arrays (this applies to the array
memory access, array indexing is more expensive).

e Array indexing internally contains a safety clipping mechanism, which is essentially a run-
time check. So avoid sending unnecessary events to the array /ndex Module. Equally, con-
sider sharing an array /Index Module between a Read and a Write in such situations.

Relative Order

Check the relative order of the expression computation and consider how often various input
events arrive. For example, the following Structure is taking into consideration that the sam-
pling rate changes much more rarely than the frequency control signal, therefore the division
will be done only upon sampling rate changes, otherwise only the much cheaper multiplication
will be performed:

L SR.R—= EfES &—s

Computation of the normalized frequency for an oscillator.
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Had the above Structure been implemented just by dividing F by SR.R, the division would
have been performed on each F event, potentially causing a noticeable increase in the CPU
load.

Type Conversions

Conversions between floats and integer and between floats of different precisions are generally
comparable in cost to the cheapest mathematical operations, but this could drastically vary de-
pending on the platform (and used to in the past). Therefore, as a general rule, unnecessary
conversions should be avoided.

The following Structure for example does two unnecessary conversions between float and int:

Unnecessary implicit type conversion.

Even though this Structure should typically perform correctly (unless the integer values exceed
the range where the integers are exactly representable by floating point), the CPU load of the
Structure is higher than necessary due to the type conversions implicitly occurring on both
sides of the absolute value Module.

Avoid Bad Numbers

Various special types of values causing higher CPU load have been mentioned in section 15.5,
Denormals and Other Bad Numbers. These have to be avoided. Since these values can be par-
ticularly produced when mathematical operations are computed for the out-of-range inputs,
care needs to be taken to keep the values in the supported range.

Even if a particular out-of-range value does not result in a 'bad number' in a given im-

plementation of REAKTOR Core, this might change in the future versions or on different
hardware. The result of processing an out-of-range value should not be relied upon.
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6.1 Low-level Macros

6.1.1  Math

The Macros for computing various mathematical operations, which are not implemented by the
built-in Modules: maximum, minimum, reciprocation, square root, rounding, wrapping etc. As
with math built-in Modules, each input is a triggering one.

Trig-Hyp

Trigonometric and hyperbolic functions and their inverses.

Shaper

Functions for control signal shaping.

BLT Prewarp

Frequency pre-warping for the bilinear transform (used in digital filter construction). Various
argument ranges and precisions.

6.1.2  Math Mod

Modulation Macros for computing various mathematical operations. See section 14.6, Modula-
tion Macros for the explanation of the modulation concept.

The 'tap' Macros are a special kind of Modulation Macros, where the triggering is done by the
‘control' input rather than by the 'signal' inputs.

Shaper

Modulation versions of control signal shaper functions.
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6.1.3  Clipping

Modulation Macros for clipping the values to specified ranges. The clipping threshold inputs
are non-triggering.

6.1.4  Saturator

There are some 'hard saturators', which ensure that the output signal level does not exceed a
certain threshold and some 'soft saturators', which do not have a saturation threshold.

6.1.5  Convert

Dedicated mathematical Macros for conversion between different value scales (for example
pitch/frequency, gain/decibel etc.).

6.1.6  Memory

Scalar and array storage handling Macros. Latches, array read/write, z/-1.

6.1.7  Flow

Additional router Macros, which employ a threshold input instead of a BoolCtl one. The routing
is done depending on how the input signal compares to the threshold value.

6.1.8  Event

Macros specifically focusing on the processing of events (value + triggering). Filtering dupli-
cates, raw clock handling, delaying the events.

6.1.9  Logic

Boolean value handling. The Boolean values are represented by integer type signals.
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The built in BoolCtl signal type does not implement true signals in the same sense as scalar
types, because it does not transmit triggering information. A related issue is that they do not
support classical Boolean operations like AND and OR. If Boolean algebraic computations are
required, the Logic Macros can be used instead. Particularly they contain:

e Comparison operations producing logical signals.
e (lassical Boolean AND, OR, NOT and XOR.
e Dedicated float and integer signal routers controlled by a logical signal.

e (Conversion to and from BoolCtl.

6.2 Audio

The Library > Audio menu contains a number of low-level audio processing Macros (delays,
crossfaders, panners). Further audio processing Macros can be found in the submenus.

6.2.1  Oscillator

Classical analog waveforms

Classical analog waveform Macros.

The inputs are the following:
e [: The oscillator frequency in Hz. Negative frequencies can be specified as well.
e PW: The width of the pulse waveform.
o 0 means 0% width
o 1 means 100% width
> 0.5 means 50% width (default)
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e Rst: Oscillator restart trigger. The value of the restart event specifies the restart phase:
o O restarts to the beginning of the cycle

o 1 restarts to the end of the cycle (which is the same as the beginning, since the wave-
form is fully periodic)

o 0.5 restarts to the middle of the cycle
o 0.3 restarts to the 30% of the cycle

o Values different by a whole integer restart to the same position, for example 1.3 re-
starts to the 30% of the cycle

of 1 sample. This may need to be taken into account if you need sample-precise control

® The classical analog waveform oscillators (as well as their slave versions) have a latency
of your structures.

The Rst input is intended for occasional oscillator restarts, for example in response to
the MIDI gate signal and should not be used to implement audio oscillator sync. For os-
cillator sync use the slave versions of the same oscillators.

The SR input is the standard SR Bundle connector explained in section 14.9, SR and CR Buses.

The upper output of the oscillators delivers the oscillator signal. The lower (Bundle) output is
for connection of the slave oscillators.

A special 4-Wave oscillator Macro delivers all four waveforms simultaneously. The waveforms
produced by this oscillator are phase locked to each other.

The 4-Wave oscillator.
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'Slave' Oscillators

The 'slave' oscillators are the audio-synced versions of the ordinary oscillators. Compared to the
ordinary oscillators, they have two additional inputs:

Sawtooth [S]

A 'slave' sawtooth oscillator.

e Sync: Can be connected to the lower (Bundle) output of a master oscillator to produce the
audio sync effect. Only ordinary (non-slave) oscillators can serve as master oscillators.

e SncH: Controls the sync hardness:
o 1 = hard sync
o 0 =nosync

o Oto 1 = various degrees of soft-sync

Sub Oscillator

The sub oscillator is a special kind of 'slave' pulse oscillator, which is phase-locked to the mas-
ter.

Sub oscillator.

The idea of the sub oscillator is that it changes its output from -1 to 1 or back whenever there
is a transition (a cycle completion) in the master, thereby producing a square waveform one
octave below the master oscillator's frequency. By leaving out some of the master transitions
out, further sub oscillator modes are available:

e (O =-1 octave, 50% pulse width (use every master transition)

e 1 =-2 octaves, 50% pulse width (use every other master transition)

REAKTOR 6 - - 131



Macro Reference
Audio

e 2 =-2 octaves, 75% pulse width (use 1st, 4th, bth, 8th etc. master transitions)

The sub oscillator is fully driven by the master oscillator. Therefore it stops whenever the mas-
ter is stopped.

Sync Gate

The Sync Gate Macro allows to interrupt the sync signal from the master to a slave or a sub
oscillator.

F Master —8F L]
| — S
_ . o Gate
E Sync On—A5

Using a sync gate to stop the audio sync.

The signal at the G input should be either O or 1. In the O state the sync signal does not come
through, effectively disabling the synchronization of the slave to the master.

A sub oscillator would be completely stopped if the gate is off.

Noise Oscillators

These generate different kinds of noise.

=] Eil=13)

Whie Foize

Noise oscillators.

If several identical noise oscillators are used, then by default they will produce fully identical
signals. This can be avoided by connecting different constants to their Seed inputs, which then
initializes their internal (pseudo) random number generators with different values.
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6.2.2  Filter

The Core Macro Library contains a selection of ZDF filters. The filters are built using the ZDF
toolkit, which is also part of the Library (see section 16.4.3, ZDF Toolkit).

The filters built using the ZDF toolkit are optimized for Structure readability, not for CPU efficien-
cy. A number of filters have been redone with CPU efficiency in mind. These can be told by the
"(opt)" suffix (standing for optimized) at the end of their names.

Linear Filters

Linear filters only change the frequency spectrum of the signal and do not introduce any dis-
tortion. A number of these filters can resonate but cannot self-oscillate (at least not reliably).
The maximum resonance setting of these filters, where applicable, is therefore limited to (ap-
proximately) 1.

The most important Macros implementing the linear filters are the following.

e 1-pole > 1-pole: A multimode linear 1-pole filter producing a low-pass and a high-pass
signals with a -6dB/octave roll-off.

e 2-pole > SVF: A multimode 2-pole resonating filter producing a low-pass, a band-pass and
a high-pass output. The roll-off of low-pass and high-pass is -12dB/octave. The roll-off of
the band-pass is -6dB/octave on each of the two slopes. Modal pickups (see below) can
be used to obtain further modes.
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@ Intuitively, although not fully correctly, one could imagine each of the filter's poles to be
responsible for a -6dB/octave roll-off: one pole is responsible for the -6dB/octave slope
to the left of the filter's center frequency, and the other pole is responsible for the -6dB/

octave slope to the right of the filter's center frequency.

e 4-pole > Ladder LP: A 4-pole resonating low-pass filter, emulating the classical transistor
ladder filter design. The roll-off is -24dB/octave. At higher resonance settings this filter
naturally produces a drop in the bass frequencies. This drop can be avoided by using the
modal pickups (see below).

Ladder LP

e 4-pole > Ladder HP: A 4-pole resonating high-pass filter. The roll-off is -24dB/octave. The
Ladder LP modal pickups (see below) can be used with Ladder HP, producing 'flipped' fil-
ter shapes (high-pass instead of low-pass etc.).

e A-pole > Ladder BP: A 4-pole resonating band-pass filter. The roll-off of each of the two
slopes is -12dB/octave. The filter does not provide the modal pickup connector, but two
further modes with lower pole counts (BP3 and BP2) are provided directly by the Module
outputs. At zero resonance the BP3 mode has a -12dB low-pass roll-off and -6dB high-
pass roll-off, while BP2 has both roll-offs at -6dB/octave

i Sk

Ladder BF

The F input specifies the filter cutoff frequency in Hz.
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The Res input, if available, controls the filter's resonance. The range is from O to approximate-
ly 1. In fact, the maximum resonance value is clipped slightly below 1, because at too high
resonance settings linear filters may produce very loud resonance peaks. For higher resonance
settings use nonlinear filters (see below).

The resonance control of the filter Macros is implemented by linear mapping of the resonance pa-
rameter to the filter's internal parameters (such as feedback amount or damping). This does not
necessarily provide the best resonance control curves. Use control signal shapers (such as those
found in Math Mod > Shapers) to change the resonance control curve. For example, an SVF reso-
nance control knob can be shaped with a Hyp Shaper whose bending parameter is set to 0.3. This
will make the resonance control of the SVF LP feel similar to the one of the Ladder LP.

Nonlinear Filters

Nonlinear filters, besides the purely filtering effect, apply some nonlinear processing to the sig-
nal, causing it to saturate internally in the filter. As a result, the resonance of such filters can
be driven to excessive values (above 1) without causing the filter to 'explode'. At these exces-
sive resonance settings the filters may produce sound even in the absence of the input signal,
which is referred to as the self-oscillation effect.

The most important nonlinear filters in the Core Macro Library are the following.

e 2-pole > SKF LP (NL): Nonlinear Sallen—Key low-pass filter (with an additional band-pass
output). In the linear range (low signal levels) this filter sounds identically to the SVF and
therefore can be thought of as a nonlinear counterpart of the latter. The SatL input con-
trols the internal saturation level of the filter. The smaller is the saturation level setting,
the stronger the filter will saturate (default value is 1).

For a larger variety of output signals use nonlinear TSK filters, which have dedicated pickup Mac-
ros. The Core Macro Library also contains a nonlinear SVF, but SKF and TSK are the recommend-
ed option for nonlinear filters.

REAKTOR 6 - - 135



Macro Reference
Audio

e 4-pole > Ladder LP (NL): A nonlinear counterpart of Ladder LP. The SatL input controls
the internal saturation level of the filter. The smaller is the saturation level setting, the
stronger the filter will saturate (default value is 1). The F HP and HP A inputs control the
cutoff (in Hz) and the amount (from O to 1) of the internal high-pass filtering of the feed-
back signal. One particular effect of this high-pass filtering is prevention of the loss of
bass frequencies. When used together with normalized DC gain pickups (such as Lad-
der LP -> LPn), it can produce an extra bass boost.

The Core Macro Library also contains 8-pole nonlinear ladder filters. The 8-pole band-pass ladder
filter stands out among those by having two resonance peaks in the negative resonance self-oscil-
lation range, which can generate quite special sounds.

In order to better balance the behavior of the saturating nonlinear filters in the low-resonance
and self-oscillation it is recommended to connect an additional saturator (see section 16.1.4,
Saturator) at the filter's output.

Modal Pickups

With many filter designs (including Ladder, SVF and TSK) a large number of different modes
can be picked up from the filter. In order to keep the number of outputs low, many filter Mac-
ros in the Core Macro Library provide only the main mode (or a small number of 'main modes')
directly as their outputs. The remaining modes can be picked up from the dedicated modal
Bundle output:

Modal Bundle outputs of SVF and Ladder LP filters.
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The pickup can be done by using the modal pickup Macros, located in the Pickup submenus
of the respective menus. For example, modal pickups for the 2-pole filters are located in Audio
> Filter > 2-pole > Pickups. The pickup Macros are categorized as follows.

e SVF pickups: Can be used with linear and nonlinear 2-pole SVF filters.
e TSK LP pickups: Can be used with linear and nonlinear TSK LP filters.

e Ladder LP pickups: Can be used with linear and nonlinear Ladder LP filters. The same
pickups can also be 'abused' with the Ladder HP filter, producing 'flipped' modes (for ex-
ample HP modes instead of LP modes etc.).

e Bl| Ladder LP-:LPn

Ladder LP

A modal pickup picking up a normalized-DC-gain low-pass mode of a Ladder LP.

There is a special XX pickup category. These pickups do not pick up a specific mode, but rath-
er allow dynamic control over which specific mode is being picked up. The control is per-
formed via a selector input. The specific meanings of the selector values can be taken from the
information of the respective pickup Macros.

= Ladder LR34 |1

Ladder LP

Dynamic modal pickup.
The upper output of such dynamic pickup Macros provides the picked up modal signal.

The lower Bundle output of "XX" pickups provides the modal mixing coefficients for the selected
mode. These coefficients can be particularly used by the TF modal pickup Macros from the
TF Toolkit (see section 16.4.4, TF toolkit).

Multinotch

Contains multi-notches with a low notch count and a comb filter.
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Butterworth

Butterworth filters are a classical signal processing filter type. By design, they are intended to
statically cut a frequency band from a signal, therefore they do not have any resonance setting.
Nevertheless, their parameters can be modulated, as with the other filters in the Core Macro
Library.

The Butterworth 2 filter group contains the 2nd kind (resonating) Butterworth filters as described
in The Art of VA Filter Design by Vadim Zavalishin.

Shelving

Each of the shelving filters simultaneously produces three different responses at the respective
three outputs: low-shelving, high-shelving and tilting (simultaneously low- and high-shelving in
opposite directions and at half amounts). Due to technical reasons the high-shelving output
has inverted control of the gain (for example if Gain input is set to +12, the high frequencies
will be lowered by 12dB). As a convenience means for controlling the high-shelving gain, there
is an inverting Gain input.

An 8-pole shelving filter.

Shelving filters have an additional Slope input which controls the slope steepness. The range
is O to 3 for the 8-pole shelving filter. Shelving filters with lower pole counts cover a smaller
range of Slope value, the maximum supported slope setting being 2 for 4-pole, 1 for 2-pole
and O (therefore there is no slope input) for the 1-pole.

The shelving group also contains band-shelving filters, which also have three outputs: band-
shelving, “notch”-shelving and band-tilting. The most important output is the band-shelving
one, the other two are provided mostly for completeness, as an analogy to the low-shelving/
high-shelving/tilting outputs. The “notch” shelving is an “inverted” version of the band-shelv-
ing (the variable-gain shelves are on the left and on the right of the center band) and is con-
trolled by an inverted gain signal. The band-tilting is a combination of band- and notch-shelv-
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ing done in opposite directions at half amounts. The BW input controls the shelving bandwidth
in octaves. The range of the Slope parameter for band-shelving filters is O to 2 for the 8-pole,
0 to 1 for the 4-pole and O to O (no Slope input) for the 2-pole.

Crossovers

The crossover Macros come in groups of four to be used together. In the simple case you will
need only two of the respective Macros. For example, in the picture below a signal is being
split into three bands by a 4th-order Linkwitz-Riley crossover. The original signal and the three
bands are processed by four independent processors and then are merged together, where you
need to use a special dedicated Macro for merging (there is a different Macro for each kind of
crossover). The reason you need this Macro is that there are phase differences between the sig-
nals and they need to be phase corrected before the merging.

B L S ——— | Process All (L]

T (R e W Process LP [T G

100—=Fq BP »——s= [STEERE) »———a BP

HP #——= NIGTLEEERR Y o—a HP

H-over JWLRY +=

A usage example of a 3-band crossover with band thresholds at 100Hz and 5kHz

If you don’t need to merge the original signal back, a somewhat less CPU-intensive Macro can
be used instead:

(o e N Process LP L NH
100 —=F1 =1 e M| Process BP (L sy JI=/5

S0C A e M| Process HP (L sy 15

w-over JulRY A-ower 3wlRY +

A cheaper mixer for the 3-band crossover.

On the other hand, if you merge the original signal later, you need to use a separate Macro for
the phase compensation:

REAKTOR 6 - - 139



Macro Reference
Audio

Phase correction of the unsplit signal.

6.23 KX

A selection of various effects.

Modulation Effects

The modulation effects include phaser, flanger, chorus, tremolo and autopan. Except for auto-
pan, there are mono and stereo versions of these effects. Most of their control parameters are
identical or similar.

The phaser Macros are discussed below as typical examples. Further details about the effect
parameters which are different from those of the phasers can be found in the information of
the respective Macros.

Stereo and mono versions of 2-notch phaser.

The following inputs are available:
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e |, R (stereo) or the top nameless input (mono): Input signal.
e Rate: The rate of internal LFO in Hz.

e P1, P2: The boundary pitches of the modulation range. The center cutoff frequency of the
internal multinotch filter is modulated within this pitch range.

e Fbk: Feedback amount. Range -1 to 1. The feedback setting affects the width of the
notches, positive values making the notches wider, negative values making them smaller.

e Spread: Adjust the spreading of the notches. Negative values increase the notch density,
positive values spread them wider apart.

e |nv: The notch inversion mode switch. Swaps the positions of the peaks and the notches.
0 =off, 1 =on.

e |FO Bend (effects with exponential LFO): Controls the bending of the exponential LFO
segments. O = linear, +1/-1 = rectangular jumps.

e [ FO Shape (effects with triangle-sine morphing LFO): Controls the morphing amount from
the triangle LFO shape to the sine LFO shape.

e Dry/Full: Controls the mixing amount of the dry and wet signals. O = dry signal only, 1 =
'strongest sounding' mixture of dry and wet signals.

The following outputs are available:

e |, R (stereo) or the top nameless output (mono): Output signal.

e \Wet L, Wet R (stereo) or Wet (mono): Pure wet signal. To be used with the 'send' style of
effect usage, when several sounds are sent to the same effect with different 'send'
amounts, producing a common 'wet' signal which is then returned back to the entire mix.

Delay Effects

The delay effects are using audio delays to produce echo sounds. A stereo feedback delay Mac-
ro illustrates:
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.
L1
® [nFan

® Time

Stereo feedback delay.
The following inputs are available:
e |, R: Signal inputs.
e |nPan: Controls stereo balance of the input signal. Range -1..1.

e Time: Specifies the delay time in seconds. Maximum delay time at 192 kHz sampling
rate is 1 sec. At lower sampling rates the maximum time is larger. It can be further in-
creased by modifying the delay buffers inside the Macro:

e Fbk: Feedback amount. Range -1..1.
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e XFbk: Cross-channel (left/right) feedback amount. Range -1..1.

e Post: The 'post-feedback-gain' output mode. If this input is set to 1, the output signal is
picked up after the feedback gain has been applied (if the feedback setting is zero, there
will be no wet output signal in this mode).

e Dry: Amount of dry signal to be sent to the outputs
e \Wet: Amount of wet signal to be sent to the outputs.
The following outputs are available:

e |, R: Output signal.

6.2.4  Transfer Functions

A set of Macros for computing the transfer functions (more precisely, frequency responses) of
the filters is located under Library > Audio > Filters > Tranfer Func. These are the counterparts
to the respective filters. They follow one and the same set of conventions. The SVF transfer
function Macro illustrates:

-
sF

LA CH

SYF [TF]

An SVF [TF] Macro.

The inputs and the outputs of a TF Macro are roughly identical to those of the respective filter
Macro with some differences.

e The upper input of a TF Macro receives a signal frequency value in Hz instead of the au-
dio signal. The Macro will output the value of the filter's frequency response at this fre-
quency.

In order to build a graphical display of filter's amplitude or phase response, send an iterated
range of signal frequency values to this input and pick up the respective output values.

e Other inputs of a TF Macro receive the parameter values identical to those of the respec-
tive filter Macro.
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The 'audio signal' outputs of the TF Macro (those corresponding to the audio signal out-
puts of the filter) produce the frequency response value at the frequency specified by the
upper input. These are complex values which can be converted into the amplitude and
phase response parts by using the to Polar Macro from the TF toolkit (see section 16.4.4,
TF toolkit):

F—eF

Fes—#Res

SWYF [TF]

The bottom 'modal Bundle' output contains a Bundle of modal TF values, which can be
picked up by a dedicated TF pickup Macro. Except for the all-pass mode, the modal SVF
frequency response pickup is done by using the SVF [TF] to XX Macro. The SVF [TF] to XX
Macro does not have an integer modal selector input, in place of it is expecting a modal
coefficients Bundle from the SVF to XX selector:

- B
select —8

Res—& Ras Hi

F—aF

|| #—Ampl

SYF [TF) c arg #—Fhasi

The SVF to XX Macro in the above picture does not need to be connected to an audio filter:

F—sF

Fes—=Res
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The TF Macros compute the ideal analog frequency responses, not taking into account
the discrete-time warping of the frequency axis.

Some of audio filters do not have TF counterparts. However, often there is a TF counterpart,
which is not immediately obvious. Below are some examples.

e There are no dedicated TF Macros for nonlinear filters (since frequency responses in un-
stable range do not really make sense anyway). Use the corresponding linear TF Macros.

e The frequency response of TSK filters is identical to those of SVF, so simply use an
SVF TF Macro to obtain TSK frequency response.

e The Ladder LP [TF] Macro has the F HP and HP A inputs available only for the Lad-
der LP (NL) Macro. To obtain the frequency response of a low-pass ladder filter without a
high-pass in the feedback these inputs can be simply left disconnected.

6.3  Control

6.3.1  Envelope

A small selection of prebuilt envelopes of varying complexity. If the selection is not sufficient,
the existing envelopes can be easily extended by the builder, because they are built using the
Envelope toolkit (see section 16.4.2, Envelope Toolkit).

The envelopes follow one and the same set of conventions. The AHDSR (attack-hold-decay-
sustain-release) envelope is used here as an example to illustrate these conventions:
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AHDSR envelope.

The envelope inputs are the following.

e G: Should be connected to a gate Bundle (see below for the explanation of Core's gate
Bundle conventions). It is responsible for triggering the attack (upon the 'gate on' event)
and release (upon the 'gate off') modes of the envelope and for sending the keypress ve-
locity information, if any.

e A H,D,S, R: The 'main' control parameters. A, H, D and R specify the time constants for
the attack, hold, decay and release stages. S specifies the sustain level, which normally
should be in the range 0 to 1, since the attack peak level is always 1.

e BendA, BendD, BendR: The bending of the attack, decay, and release stage curves. The
bending applies only to the finite-time curves (see the finite-time mode explanation be-
low). The Bend parameter range is -10 to 10. Zero bending produces linear curves, nega-
tive bending produces 'slowing down' curves, positive bending produces 'speeding up
curves'. The following pictures illustrate the attack and decay shapes for zero, negative
and positive bends respectively:
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e FinD, FinR: The finite-time mode of the decay and release stages. When the mode is set
to 1 (finite), the respective stage has the duration as specified by the D or R input. When
the mode is set to O (infinite), the respective stage decays infinitely to its target value
(sustain level or zero).

e RstO: The zero-reset mode of the envelope. When set to 1 the attack always starts from
zero level. When set to O the attack starts from the current level of the envelope.

e VelS: Velocity sensitivity, the range is O to 1. If set to O, the envelope ignores the velocity
information in the gate Bundle completely. If set to 1, the envelope scales its level ac-
cording to the velocity (provided the velocity information is present in the Bundle, see the
discussion of the gate Bundle below). At intermediate settings the envelope partially
scales its level according to the velocity.

The CR input is the standard CR Bundle connector explained in section 14.9, SR and CR Buses.

Gate Bundle

The envelope gate connections are employing a special gate Bundle. The Bundle internally
transmits the information about the gate on/off events and the associated velocities.

The gate Bundle can be obtained by converting from a Primary level gate event (forwarded to
Core via an event-mode Core Cell port). The conversion is implemented by the Gate from Prim
Macro (Library > Control > Envelope > Gate > Gate from Prim) and includes the gate on/off
events and the 'on' velocity (no 'off' velocity):

AR envelope controlled by a Primary gate event signal.

The XZero to Gate Macro (Library > Control > Envelope > Gate > XZero to Gate) sends gate
events in response to positive and negative zero crossings of the input signal (positive zero
crossings produce 'gate on' events, negative zero crossings produce 'gate off' events):
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L] (omme | Zer0 10 Gate [NEEL ]

* H#&————*H
* R#+—m——F

AR envelope controlled by zero crossings of the incoming audio signal.

Internally the gate Bundle consists up to four fibers:

= 0ff Vel

A Bundle Pack for all four fibers of the gate Bundle.

The conventions for the gate Bundle are the following.

e On: Transmits the 'gate on' trigger. The consumers should ignore the value of this fiber.
The producers should always send zero values on this fiber.

e (Off: Optional fiber. Transmits the 'gate off' trigger. The consumers should ignore the value
of this fiber. The producers should always send zero values on this fiber. If this fiber is
absent, it means that the 'gate off' trigger events are never sent.

e On Vel: Optional fiber. If present, specifies the current 'on velocity'. The standard range is
positive numbers less than or equal to 1, however, larger values are allowed as well. Gen-
erally speaking, this value should be sent only simultaneously with 'gate on' events (or
sent during the initialization, if the value is constant). If an 'on velocity' event comes at
any other moment, the consumers may respond to it or ignore it until the next 'gate on'.
Velocity-sensitive consumers should treat the missing "On Vel" filber as a value of 1.

e (Off Vel: Optional fiber. If present, specifies the current 'off velocity'. The convention is the
same as for the 'on velocity', except that the 'off velocity' events should be sent together
with the 'gate off' events.
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A number of preconfigured Bundle Pack and Unpack Modules with different numbers of fiber def-
initions/pickups are available under Library > Control > Envelope > Gate.

The Add Gate Defaults Macro (Library > Control > Envelope > Gate > Add Gate Defaults)
automatically adds Off, On Vel and Off Vel to the Bundle, in case these fibers are miss-
ing (the added velocities are equal to 1). It is intended to be used in implementations of
gate Bundle consumers and other Structures.

nected. Disconnected fibers imply a zero constant, which will send a trigger event upon
initialization. Simply leave the optional fiber away from the Bundle, or connect it to a
No Event Macro if you do not want any events sent.

® When constructing a gate Bundle, never leave the triggering fibers On and Off discon-

6.3.2 LFO

A number of LFOs of classical shapes. These are intended to be used as modulation sources,
not as audio signal sources. Particularly, the LFO Macros do not contain any anti-aliasing.

Various LFOs available in the Core Macro Library.

The inputs are similar to those of the oscillators (see section 16.2.1, Oscillator).

The CR input is the standard CR Bundle connector explained in section 14.9, SR and CR Buses.

The MultiWave LFO provides the same waveforms (except the parabolic one) phase-locked to
each other.
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MultiWave LFO.

The Tri/Sin LFO can be smoothly morphed between the triangular and sinusoidal shapes. The
T/S input controls the morphing (O = triangle, 1 = sine, other values in between specify inter-
mediate shapes).

Tri/Sin LFO.

The Exp LFO is generating analog-like slowing down exponential curves. The slowdown amount
varies from a purely linear segment to a discontinuous jump, thereby morphing between trian-
gular and rectangular shapes at the zero and maximum settings. Instead of slowing down
shapes, the speeding up shapes can also be generated. The Bend parameter controls the seg-
ment shape (O = linear, 0..-1 = slowdown, -1 = rectangular, 0..1 = speedup, 1 = rectangular).
The PW parameter controls the 'pulse width'.

Exp LFO.

The Random LFO is delivering the signal which would be produced by a white-noise driven
S&H. The Seed parameter is similar to the one of the noise oscillators (see section 16.2.1, Os-
cillator).
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Random LFO.

The triangle, sine and parabolic LFO shapes are also delivered in stereo versions. Compared to
mono versions, these have an additional Offs input, which controls the offset between the left-
and the right-channel phase-locked LFO shapes. At zero Offs both left and right channel sig-
nals are identical. For Offs between O and 0.5 the left channel LFO is 'preceding' the right
channel one (‘'movement from left to right'). For Offs between O and -0.5 the right channel is
‘preceding' the left one (‘'movement from right to left'). At 0.5 the channels have opposite
phases (both +0.5 and -0.5 settings have identical effect). The Offs value can exceed the 0.5
range, so that at +1 the channels are again in sync and so on.

Stereo LFOs.

Tempo and transport position syncing

The Multiwave LFO Sync Macro is capable of syncing to the tempo and/or transport position:

Tempo- and transport-syncable LFO
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The Mode input controls the syncing where you can independently enable tempo and transport
position syncing (see the Macro’s info for the details).

If tempo syncing is enabled, instead of the F input specifying the LFO rate in Hz, the Div input
is used, specifying the division of the whole note. For example, Div=8 sets the duration of one
LFO cycle equal to the duration of an 8th note.

If transport position syncing is enabled, the LFO doesn’t freely run but strictly follows the song
position. This guarantees that the LFO will always have one and the same value at each given
song position, therefore LFO works exactly the same each time, like an automation curve. If
the transport is stopped, the LFO can continue to run freely or stop, like an automation curve
would do (this choice is also separately controlled by the Mode parameter).

Note that in the transport position-synced mode the LFO’s value may jump on a loop
boundary or if song position is changed manually.

The tempo and transport position syncing require the transport information to be available.
This can be achieved by using the Prim Transport Macro (Library > Control > LFO > Helpers >
Prim Transport) which defines a number of scoped buses based on primary level signals.

# Tempo #+——=* Tempo
- Ofa #——& Oha Prirm Transport
- Ge—*0G

Prim Transport Macro providing the transport information.

The input signals for the Prim Transport Macro need to be obtained from the respective pri-
mary modules.

a5 » Tempo Info s——= Tam
E d6a a

Song Position Ge oG

Fsts Modulation

Starts/Stop

Obtaining signals for the Prim Transport Macro.

If you need only tempo- or only transport position-syncing, you need to provide only the respec-
tive signals to the Prim Transport Macro.
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# Tempo #+——=* Tempo
L 96a # #1063 Prim Transport
Cl Ge G

Obtaining only the tempo information.

Other tempo and transport position synced LFOs (for example the ones with only tempo
or only transport position syncing, or providing only one output waveform) can be built,
by stripping down and/or modifying the internals of the Multiwave LFO Sync Macro. For
doing such modifications using the LFO toolkit Macros is recommended.

6.3.3  Smoother

Please refer to section 14.9.4, CR rate change for the details of using smoothers.

6.4 Toolkits

6.4.1  LFO Toolkit

The LFO toolkit consists of two parts: Helpers (Library > Control > LFO > Helpers) and Phase
Shapers (Library > Control > LFO > Phase Shapers). The Helpers part concerns itself with gen-
eration of the LFO phase signals. The Phase Shapers part contains Macros for converting the
phase signal into LFO waveforms.

As a simple example of the usage of the toolkit Macros consider the internal structure of the
Sine LFO Macro from the Core Macro Library:

£ 3 £ i . Tk
. st i
CR

L. CRepi | ERime= | ERT N

Here the phase driver is directly connected to the shaper, the later converting the phase signal
to the sine waveform.
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The Sine LFO Stereo Macro additionally uses two phase offset helper Macro to shift the left
and right channels symmetrically in the opposite directions:

—raL

\

2 —a R

o
. #—Dffset Offset—8-

05—

i[RI 1

To build LFOs with tempo and/or transport position syncing features it is easiest to use the
Phase Drv Sync helper Macro (which is the core of the MulltiWave LFO Sync Macro). Lower-
level helpers such as Position Sync and Div to F Macros can also be used.

6.4.2 Envelope Toolkit

The envelope toolkit (Library > Control > Envelope > Toolkit) contains the building blocks of
the envelopes in the Core Macro Library. In fact there are only two Macros (Stage and Process)
in the toolkit and each envelope is built using these two Macros, where the Process Macro is
used exactly once in each given envelope. Therefore in order to build a custom envelope one
could simply start off with the existing envelope and duplicate the Stage Macro within that en-
velope as necessary.

In fact this duplication approach should be even preferred, because due to the development of
the Core Macro Library, different versions of the Stage and Process Macros may become incom-

patible with each other.

The implementation of the ADSR envelope found in the Core Macro Library illustrates this:
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N —
The internal Structure of an ADSR envelope.

The A, D and R Macros are simply the renamed copies of the Stage Macro. There is no dedi-
cated Macro for the sustain stage, because in this envelope the decay stage is infinitely decay-
ing. Thus there is really no sustain stage, only the sustain level as the target level of the decay
stage.

The Process Macro on the right is the one which generates the real envelope signal, the Stage
Macros only being responsible for setting the stage parameters. The upper input of the Process
Macro specifies the speed coefficient for the envelope. This can be useful if the envelope tool-
kit is used to build an LFO, otherwise this coefficient should be set to 1, so that the stage du-
rations are exactly as specified by the respective stage's parameters.

The three parallel connection paths at the bottom are used to connect the stages together in
their natural order. The Process Macro must be at the end of the chain. For the first stage
Macro these three inputs must be left disconnected, except for the lowest of them. This should
be connected to a 64-bit precision float array. The number of elements of the array must be
equal (or at least equal) to the number of the stage Macros times 6.

The other inputs of the stage Macros are as follows.

Toolkits
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e I: This is the explicit triggering input of the stage. An event at this input will force the
envelope to immediately jump to this stage. Notice that the 'Gate On' event is connected
to the triggering input of the attack stage, while the 'Gate Off' event is connected to the
triggering input of the release stage.

e Mode: A bitwise OR of stage modal flags:

o 1 = jump mode. If specified, this flag causes the stage to start (when explicitly trig-
gered or automatically switched to) at the level specified by the YO input. Otherwise
the stage starts at the current output level of the envelope (no jump).

o 2 = infinite mode. If specified, this flag causes the stage to infinitely decay from the
starting level (according to the jump mode and YO settings) to the end level specified
by Y1. The infinite decay is exponential, the decay characteristic time being control-
led by the T input.

o 4 = constant mode. If specified, this flag causes the stage to stay at its starting level
(according to the jump mode and YO settings) infinitely. The segment end level speci-
fied by Y1 and duration specified by T are ignored.

e YO: The starting level of the stage. Used only if the jump mode is specified.
e Y1:The end level of the stage. Used unless the constant mode is specified.

e T: The segment duration in seconds. In the infinite mode this input specifies the seg-
ment's characteristic time. In the constant mode this input is ignored.

e Bend: The exponential bending of the segment. Does not apply to infinite or constant seg-
ments. Refer to section 16.3.1, Envelope for more details about this parameter.

e Next: The zero-based index of the 'next' segment (the segment which should be switched
to after this segment runs out). If disconnected, assumes the 'natural' next segment, ac-
cording to the order of connection of the stage Macros.

The parameters can be modulated in real-time. Particularly the modulation of Y1, T and

Bend parameters of the currently running segment will cause real-time changes of the
envelope behavior.
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6.4.3  ZDF Toolkit

The ZDF toolkit (Library > Audio > Filters > ZDF Toolkit) contains the building blocks of the
filters in the Core Macro Library. The purpose of the toolkit is to allow the implementation of
ZDF (zero delay feedback) filters in an intuitively readable manner.

The following building blocks correspond to the fundamental elements of the continuous-time
(‘analog') filter block diagrams:

- (I - - -
L -
2 ] : @Fain ]

ZDF toolkit Macros implementing the fundamental continuous time audio processing primitives.

¢ Integrator: A fundamental 'analog memory element'. Roughly corresponds to the z blocks
in the digital filter block diagrams, but is not functionally equivalent to the latter. The w/2
input should be connected to the pre-warped half-cutoff value

e Adder: Adds to ZDF signals together.

e Gain: Multiplies a ZDF signal by a specified gain factor. The gain input is non-triggering,
therefore this gain Macro is similar to the modulation multiplier.

e Subtractor: Subtracts one ZDF signal from another. A convenience shortcut for a combina-
tion of an adder and a -1 gain.

Each 'audio signal connection wire' in the ZDF toolkit needs to be implemented by two parallel
wires:

]
W2 =2 I Gain—* Gain

A single audio path implemented by two parallel ZDF wires.

Each feedback loop needs to be implemented by a single noensolid Macro. The following SVF
Structure illustrates.
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Out &+—= P

S B

2R —= Gain

A nonsolid Structure implementing the main part of a low-pass SVF.

The guidelines are the following.

e Each Macro must implement exactly one feedback loop. Any other feedback loops (if ex-
isting) should be contained in the nested Macros built according to the same guidelines.

e The Macro may have exactly one audio input. This input must be directly connected to an
Input -Fbk (as in the picture above) or an /nput +Fbk Macro from the ZDF toolkit. This
Input £Fbk Macro is the point where the input signal is 'injected' into the feedback loop.

The difference between the two Macros is simply that /nput -Fbk inverts the feedback signal. One

could use a ZDF gain Macro to invert the signal instead.

e The audio path inside the feedback loop may split and merged back (for example in the
picture above the path splits after the first integrator and is merged back at the adder).
However no further feedback loops are allowed, except in the nested Macros built accord-
ing to the same guidelines.

Sometimes this limitation can be worked around by treating two feedback loops as one loop 'nest-
ed' into the other. However, there are situations where the inner feedback loop is 'instantaneously
unstable' (see the instantaneous instability discussion below) on its own, and only the presence of
the outer feedback loop stabilizes it back. In this case such nesting decompositions will not be
handled correctly by the ZDF toolkit, as it requires each feedback loop to be stable (in the instan-
taneous sense only) on its own, without outer stabilization factors. This is for example the reason
why a non-transposed version of the Sallen—Key filter cannot be (directly, without additional man-
ual 'hacks') implemented by the ZDF toolkit.
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e The Macro may have several outputs. However each output needs to be 'implemented' by
a dedicated Output Macro from the ZDF toolkit. The Ext input of the Output Macro needs
to be connected to the Ext output of the /nput Macro of the Structure.

The outermost Macro of a ZDF implementation should be (normally) a solid Macro and imple-
ment the conversion between the ordinary and ZDF audio signals (using to ZDF and from ZDF
Macros from the toolkit):

- [ ]
-» ZoF |

F #——a RVl #—a

Fes #——= —a 2R

-i—e

The outermost Structure of a ZDF low-pass SVF implementation.

Besides the audio conversion, this Structure is using an F fo w/2 Macro from the ZDF toolkit to
convert the cutoff in Hz to a pre-warped half-cutoff for the ZDF integrators. It also converts the
resonance parameter into the damping gain 2R.

The above guidelines can be violated in principle, as long as the following hard restric-
tions are taken into account: Each feedback loop must have only a single input point
implemented by an /nput +Fbk Macro and correctly employ the ZDF Output Macros. The
guidelines simply provide a framework for following these hard restrictions.

Saturators

In order to build filters which can self-oscillate one needs to introduce saturating nonlinearities
into the filters. The ZDF toolkit provides two different versions of a tanh saturator and a satu-
rating integrator:

.l LIS

.2
Sat tanh [cheap] Sat tanh [Taylor] sl

Saturating ZDF primitives.

Toolkits
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The L input controls the saturation level (the horizontal asymptote of the saturation curve).

Filter Primitives

Often filters are used as building blocks for more complex filters. The Filter Primitives subme-
nu of the ZDF toolkit contains some of such low-level filters.

The following example illustrates how a ladder filter is built from four 1-pole filters.

Ladder LP

Ladder filter Structure.

Instantaneous Instability

At certain extreme parameter settings (typically, in cases of excessive positive feedback) the
routine application of the ZDF approach will not deliver correct results anymore. The mathe-
matical reasons for this can be found in the corresponding literature. What this means practi-
cally is that the denominator of the zero delay feedback equation becomes zero or negative,
which can be checked by monitoring the denominator value inside the feedback solver, which
is located inside /nput +Fbk Macros:

Toolkits
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Input -Fhk

-1 —& Gain

* Fhk® - l - :

The feedback solver inside the Input -Fbk Macro. The denominator value is available at the 1/G port of the solver.

The instantaneous instability normally happens far in the seloscillation range of the filters or in
some untypical designs or usage cases. Some of the examples are the following.

Ladder filter with excessive unclipped negative resonance settings (since the ladder filter
employs an inverted feedback, negative resonance means positive feedback).

SVF with excessive unclipped resonance settings (in the self-oscillation range the internal
damping of the SVF is negative, which together with the inversion of the feedback signal
results in a positive feedback).

An attempt to implement a non-transposed Sallen—Key filter by feedback loop decomposi-
tion. The Sallen—Key filter has two feedback points. Since each feedback point needs to
be implemented by a dedicated /nput +Fbk Macro, and since there can be only one such
Macro per feedback loop, it is not implementable in a straightforward manner using the
ZDF toolkit. One could attempt a workaround, by decomposing it into two feedback loops,
one nested into the other. However, the inner feedback loop employs positive feedback,
which at certain (not excessive at all) settings can become instantaneously unstable on its
own. It is the presence of the outer loop which stabilizes the inner feedback again. The
instantaneous instability of the inner loop results in the ill-conditioning of the entire
Structure, and the filter may produce INFs and NaNs at its output and in its state as the
result.

This problem with the non-transposed Sallen—Key filter is not the limitation of the ZDF approach
as such, but the one of the toolkit. In principle, with some manual 'hacking' the toolkit also could

allow a non-transposed Sallen—Key filter implementation.

Toolkits
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It is the Structure builder’s responsibility to clip the filter parameters, if necessary, so
that the instantaneous instability does not occur.

6.44  TF toolkit

The 'transfer function' toolkit (located under Library > Audio > Filter > Tranfer Func > TF Tool-
kit) contains the building blocks of the transfer function Macros in the Core Macro Library and
can be used to modify the existing transfer function Macros or build the new ones.

The absolute majority of the Macros in the toolkit are simply implementing the complex math
operations. The complex values themselves are represented by a Bundle containing Re and /Im
fibers.

The special 'input' and 'output' Macros of the toolkit are the following Macros.

e s: This Macro takes the specified frequency f and the specified cutoff frequency F and
produces an imaginary value j f/ F. This complex value specifies the point on the s-plane
where the (unit cutoff) transfer function needs to be evaluated.

*f
*F

e to Polar: This Macro converts a complex value z to its absolute magnitude |zl and argu-
ment arg z. Normally used to obtain amplitude and phase responses from the frequency
response value.
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